K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta thấy \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

 \(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

......

\(\dfrac{1}{10^2}< \dfrac{1}{9.10}\)

hay \(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{10^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{9}-\dfrac{1}{10}\)

\(D< 1-\dfrac{1}{10}=\dfrac{9}{10}< 1\) ( đpcm )

Ta có \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)

         \(\dfrac{1}{3.3}\)<\(\dfrac{1}{2.3}\)

         \(\dfrac{1}{4.4}\)<\(\dfrac{1}{3.4}\)

  .........................

         \(\dfrac{1}{10.10}\)<\(\dfrac{1}{9.10}\)

=>\(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{10.10}\)\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

=> D <  1 - \(\dfrac{1}{10}\)

=>D < \(\dfrac{9}{10}\)

=> D < \(\dfrac{10}{10}\)

 Vậy D < 1

A=1/2^2+1/3^2+...+1/10^2

=>A<1-1/2+1/2-1/3+...+1/9-1/10=1-1/10<1

17 tháng 6 2021
Kết bạn với mình thì mk mới trả lời
22 tháng 8 2023

\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{10^2}\)

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

\(.....\)

\(\dfrac{1}{10^2}< \dfrac{1}{9.10}\)

\(\Rightarrow B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{10^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\)

\(\Rightarrow B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{10^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}=1-\dfrac{1}{10}< 1\)

\(\Rightarrow B< 1\left(dpcm\right)\)

22 tháng 8 2023

\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{10^2}\)

 \(B< \dfrac{1}{1\times2}+\dfrac{1}{2\times3}+...+\dfrac{1}{9\times10}\)

 \(B< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(B< 1-\dfrac{1}{10}\)

\(B< \dfrac{9}{10}< 1\)

Vậy \(B< 1\)

AH
Akai Haruma
Giáo viên
2 tháng 1 2021

Lời giải:

\(B=(1.2)^2+(2.2)^2+(3.2)^2+...+(10.2)^2\)

\(=2^2.1^2+2^2.2^2+2^2.3^2+...+2^2.10^2=2^2(1^2+2^2+...+10^2)\)

\(=4A=4.385=1540\)

31 tháng 3 2021

Ta có 1/2.2<1/1.2

         1/3.3<1/2.3

         1/4.4<1/3.4

  .........................

         1/20.20<1/19.20

=>1/2.2+1/3.3+1/4.4+...+1/20.20<1/1.2+1/2.3+1/3.4+...+1/19.20

=>A<1/1-1/2+1/2-1/3+1/3-1/4+...+1/19-1/20

=>A<1/1-1/20

=>A<20/20-1/20

=>A<19/20<20/20=1

=>A<1

 Vậy A<1

Ta thấy:

\(2^2=2.2>1.2\Rightarrow\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(3^2=3.3>2.3\Rightarrow\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

.................

\(9^2=9.9>8.9\Rightarrow\dfrac{1}{9^2}< \dfrac{1}{8.9}\)

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}>1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}=1-\dfrac{1}{9}=\dfrac{8}{9}\)

=> Đpcm

8 tháng 5 2021

Ta thấy:

22=2.2>1.2⇒122<11.222=2.2>1.2⇒122<11.2

32=3.3>2.3⇒132<12.332=3.3>2.3⇒132<12.3

.................

92=9.9>8.9⇒192<18.992=9.9>8.9⇒192<18.9

⇒122+132+142+...+192<11.2+12.3+13.4+...+18.9⇒122+132+142+...+192<11.2+12.3+13.4+...+18.9

⇔122+132+142+...+192>1−12+12−13+13−14+...+18−19=1−19=89⇔122+132+142+...+192>1−12+12−13+13−14+...+18−19=1−19=89

=> ...(tự viết)

Ta thấy:

22=2.2>1.2⇒122<11.222=2.2>1.2⇒122<11.2

32=3.3>2.3⇒132<12.332=3.3>2.3⇒132<12.3

.................

92=9.9>8.9⇒192<18.992=9.9>8.9⇒192<18.9

⇒122+132+142+...+192<11.2+12.3+13.4+...+18.9⇒122+132+142+...+192<11.2+12.3+13.4+...+18.9

⇔122+132+142+...+192>1−12+12−13+13−14+...+18−19=1−19=89⇔122+132+142+...+192>1−12+12−13+13−14+...+18−19=1−19=89

=> 11111111111111111111110101010110000

HACK