Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
x+y+y+z+z+x=\(\frac{13}{12}\)
2(x+y+z)=\(\frac{13}{12}\)
=>x+y+z=\(\frac{13}{24}\)
z=(x+y+z)-(x+y)
y=y+z-z
x=x+Y-y
A em tự tính nhé
b) B = 1+ 3 + 32+...+399
3B = 3+ 32+33+...+3100
do đó 3B-B= (3+32+33+...+3100) - ( 1+3+32+...+399)
2B= 3100-1
B= (3100-1) : 2
c) \(C=1+\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x.\left(x+1\right)}\)
\(C=1+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}\)
\(C=1+\frac{1}{2}.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\right)\)
\(C=1+\frac{1}{2}.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}\right)\)
\(C=1+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)\)
\(C=1+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{x+1}\right)\)
Phần c thế này thôi vì ko có giá trị x cụ thể .
d) \(D=\frac{9}{8}.\frac{16}{15}.\frac{25}{24}.....\frac{8100}{8099}\)
\(D=\frac{9.16.25....8100}{8.15.24....8099}\)
\(D=\frac{3.3.4.4.5.5....90.90}{2.4.3.5.4.6.....89.91}\)
\(D=\frac{\left(3.4.5...90\right).\left(3.4.5...90\right)}{\left(2.3.5...89\right).\left(4.5.6...91\right)}\)
\(D=\frac{3.4.5...90}{2.3.4...89}.\frac{3.4.5...90}{4.5.6...91}\)
\(D=\frac{90}{2}.\frac{3}{91}\)
\(D=45.\frac{3}{91}=\frac{135}{91}\)
\(x-\frac{37}{45}=\frac{4}{5.9}+\frac{4}{9.13}+.....+\frac{4}{41.45}\)
\(\Rightarrow x-\frac{37}{45}=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\)
\(\Rightarrow x-\frac{37}{45}=\frac{1}{5}-\frac{1}{45}\)
\(\Rightarrow x-\frac{37}{45}=\frac{8}{45}\)
\(\Rightarrow x=\frac{37}{45}+\frac{8}{45}\)
\(\Rightarrow x=1\)
Đặt \(B=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)
\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)
\(=\frac{100}{99}+\frac{100}{3\times97}+\frac{100}{5\times95}+...+\frac{100}{49\times51}\)
\(=100\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
Đặt \(C=\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{97\times3}+\frac{1}{99\times1}\)
\(=2\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
\(A=\frac{B}{6}=\frac{100}{2}=50\)
Vậy \(A=50\)
Bài 3:
a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)
2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)
2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)
3A = \(1-\frac{1}{2^6}\)
=> 3A < 1
=> A < \(\frac{1}{3}\)(đpcm)
b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)
4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\) (1)
Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)
3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)
4B = \(3-\frac{1}{3^{99}}\)
=> 4B < 3
=> B < \(\frac{3}{4}\) (2)
Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)
a, \(\frac{x+1}{5}+\frac{x+1}{7}=\frac{x+1}{9}\)
\(\Leftrightarrow\frac{x+1}{5}+\frac{x+1}{7}-\frac{x+1}{9}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}\right)=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
b, \(\frac{x+4}{96}+\frac{x+3}{97}=\frac{x+2}{98}+\frac{x+1}{99}\)
\(\Leftrightarrow\left(\frac{x+4}{96}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+2}{98}+1\right)+\left(\frac{x+1}{99}+1\right)\)
\(\Leftrightarrow\frac{x+100}{96}+\frac{x+100}{97}=\frac{x+100}{98}+\frac{x+100}{99}\)
\(\Leftrightarrow\frac{x+100}{96}+\frac{x+100}{97}-\frac{x+100}{98}-\frac{x+100}{99}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{96}+\frac{1}{97}+\frac{1}{98}+\frac{1}{99}\right)=0\)
\(\Leftrightarrow x+100=0\)
\(\Leftrightarrow x=-100\)
a) x + 1/5 + x + 1/7 = x + 1/9
<=> 1/5x + 1/5 + 1/7x + 1/7 = 1/9x + 1/9
<=> (1/5x + 1/7x) + (1/5 + 1/7) = 1/9x + 1/9
<=> 12/35x + 12/35 = 1/9x + 1/9
<=> 12/35x + 12/35 - 1/9x = 1/9
<=> 73/315x + 12/35 = 1/9
<=> 73/315x = 1/9 - 12/35
<=> 73/315x = -73/315
<=> x = 73/315 : -73/315 = -1
=> x = -1
b) làm tương tự
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=3+\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=\frac{2765070}{921690}+\frac{9310}{921690}+\frac{9405}{921690}+\frac{9702}{921690}\)
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=\frac{2793487}{921690}\)
\(BCNN\left(99,98,95\right)=921690\Rightarrow x=101\)
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{99}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}=\frac{3.4.5...100}{2.3.4...99}=\frac{100}{2}=50\)
100 / 2=50