Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(S=1.3+3.5+5.7+...+99.101=3+15+35+...9999\)
Ta thấy :
\(3=2^2-1\)
\(15=4^2-1\)
\(35=6^2-1\)
.....
\(9999=100^2-1\)
\(\Rightarrow S=2^2+4^2+...+100^2-\left(1\right).\left(\left(100-2\right):2+1\right)\)
\(\Rightarrow S=\dfrac{100.\left(100+1\right)\left(2.100+1\right)}{6}-51\)
\(\Rightarrow S=\dfrac{100.101.201}{6}-51=338299\)
S= 1-2 + 3-4 + 5-6+... ..+2015-2016(có 2016 số)
=(1-2) + (3-4) + (5-6) +...+(2015-2016) (có 2016:2=1008 nhóm có 2 số)
=-1 +(-1) +(-1) +...+(-1)( có 1008 số(-1))
=-1.1008
=-1008
vậy S=-1008
S=1*2+2*3+3*4+...+99*100
3S=3*(1*2+2*3+3*4+...+99*100)
3S=1*2*3+2*3*3+3*4*3+...+99*100*3
3S=1*2*(3-0)+2*3*(4-1)+3*4*(5-2)+...+99*100*(101-98)
3S=1*2*3-1*2*0+2*3*4-2*3*1+3*4*5-3*4*2+...+99*100*101-99*100*98
3S=(1*2*3-2*3*1)+(2*3*4-3*4*2)+...+(98*99*100-99*100*98)+99*100*101
3S=0+0+...+0+999900
3S=999900
S=999900/3
S=333300
3S = 1.2.3 + 2.3.3 + 3.4.3 +...+99.100.3
=1.2.3 + 2.3.(4-1)+3.4(5-2)+...+99.100(101-98)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
= 99.100.101
=999900
Ta có \(S=1+3^2+3^4+...+3^{98}\Rightarrow3^2.S=3^2+3^4+3^6+...+3^{100}\)
\(=\left(S-1\right)+3^{100}\)
\(\Rightarrow9S=S+3^{100}-1\Rightarrow S=\frac{3^{100}-1}{8}.\)
Ta thấy \(S=1+3^2+3^4+...+3^{98}=\left(1+3^{98}\right)+\left(3^2+3^4\right)+...+\left(3^{94}+3^{96}\right)\)
Vì 31 có tận cùng là 3; 32 có tận cùng là 9; 33 có tận cùng là 7, 34 có tận cùng là 1 nên 34k+2 có tận cùng là 9; 34k có tận cùng là 1. Vậy thì 1+398 có tận cùng là 0, tương tự 32 + 34 cũng có tận cùng là 0;...
Tóm lại S có tận cùng là 0 hay S chia hết cho 10.
S=5+5^2+5^3+5^4.....+5^99+5^100
S=(5.1+5.5)+(5^3.1+5^3.5)+...+(5^99.1+5^99.5)
S=5.(1+5)+5^3.(1+5)+...+5^99.(1+5)
S=6.(5+5^3+...+5^99) chia hết cho 6
S= 4+10+18
S=14+18
=32
kick mk đi
mk
cảm ơn
hen
cầu
xin
kick
cho mk
S = 1 x 4 + 2 x 5 + 3 x 6
S = 4 + 10 + 18
S = 14 + 18
S = 32