Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(x:y:z=2:4:7\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{7}=\frac{2x}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{7}=\frac{2x}{4}=\frac{2x-y+z}{4-4+7}=\frac{-21}{7}=-3\)(vì 2x-y+z=-21)
Vậy x= -3 . 2 = -6
y= -3 . 4 = -12
z= -3 . 7 = -21
1)
Có:\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\\\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\end{cases}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}}\)
Áp dụng tc của DTSBN có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x-y+z}{8-12+15}=\frac{33}{11}=3\) (vì x-y+z=33)
\(\Rightarrow\hept{\begin{cases}x=3.8=24\\y=3.12=36\\y=3.15=45\end{cases}}\)(tm)
Vậy.....................
2)
Có: \(\text{ x:y:z=2:3:4 }\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x}{2}=\frac{3y}{9}=\frac{2z}{8}\)
Áp dụng tc của DTSBN có:
\(\frac{x}{2}=\frac{3y}{9}=\frac{2z}{8}=\frac{x+3y-2z}{2+9-8}=\frac{3}{3}=1\)(vì x+3y-z=3)
\(\Rightarrow\hept{\begin{cases}x=2\\y=3\\z=4\end{cases}}\)(tm)
Vậy................
bài 2 :
ta có x:y:z=3:5:(-2)
=>x/3=y/5=z/-2
=>5x/15=y/5=3z/-6
áp dụng tc dãy ... ta có :
5x/15=y/5=3z/-6=5x-y+3z/15-5+(-6)=-16/4=-4
=>x/3=-=>x=-12
=>y/5=-4=>y=-20
=>z/-2=-4=>z=8
mình làm câu b nhé
2x-2/4=3y-6/9=z-3/4
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có:
=2x-2+3y-6-z-3/4+9-5
=(2x+3y-z)-(2+6-3)/9
=50-5/9=45/9=5
mình gợi ý tới đây thui , còn lại bạn làm tiếp nhé
Với các bài khá nâng cao như vậy bạn đăng tách ra nhé!
Answer:
a) Ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Ta đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Ta có: \(5z^2-3x^2-2y^2=594\)
\(\Rightarrow5.\left(5k\right)^2-3.\left(3k\right)^2-2.\left(4k\right)^2=594\)
\(\Rightarrow5.5^2k^2-3.3^2k^2-2.4^2k^2=594\)
\(\Rightarrow5.25k^2-3.9k^2-2.16.k^2=594\)
\(\Rightarrow125k^2-27k^2-32k^2=594\)
\(\Rightarrow k^2.\left(125-27-32\right)=594\)
\(\Rightarrow k^2.66=594\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\pm3\)
Với \(k=3\Rightarrow\hept{\begin{cases}x=3.3=9\\y=3.4=12\\z=3.5=15\end{cases}}\)
Với \(k=-3\Rightarrow\hept{\begin{cases}x=\left(-3\right).3=-9\\y=\left(-4\right).3=-12\\z=\left(-5\right).3=-15\end{cases}}\)
Answer:
b) \(3.\left(x-1\right)=2.\left(y-2\right)\Rightarrow6.\left(x-1\right)=4.\left(y-2\right)\)
Mà: \(4.\left(y-2\right)=3.\left(z-3\right)\)
\(\Rightarrow6.\left(x-1\right)=4.\left(y-2\right)=3.\left(z-3\right)\)
\(\Rightarrow\frac{6.\left(x-1\right)}{12}=\frac{4.\left(y-2\right)}{12}=\frac{3.\left(z-3\right)}{12}\Rightarrow\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}==\frac{\left(2x-2\right)+\left(3y-6\right)-z}{4+9-4}=\frac{2x-2+3y-6-z}{9}=\frac{\left(2x+3y-z\right)-\left(2+6\right)}{9}=\frac{50-8}{9}=\frac{14}{3}\)
\(\Rightarrow\hept{\begin{cases}x-1=2.\frac{14}{3}=\frac{28}{3}\\y-2=3.\frac{14}{3}=14\\z-3=4.\frac{14}{3}=\frac{56}{3}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{31}{3}\\y=16\\z=\frac{68}{3}\end{cases}}\)
c) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y-z}{18+16-15}=\frac{38}{19}=2\)
\(\Rightarrow\frac{x}{18}=2\Rightarrow x=18.2=36\)
\(\Rightarrow\frac{y}{16}=2\Rightarrow y=16.2=32\)
\(\Rightarrow\frac{z}{15}=2\Rightarrow z=15.2=30\)
x:y:z= 4:5:6
=>x/4=y/5=z/6
=>x2/16=2y2/50=z2/36
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x2/16=2y2/50=z2/36=x^2- 2y^2+ z^2/16-50+36=18/2=9
suy ra x2/16=9 =>x2=144 =>x=12 hoặc x=-12
2y2/50=9 =>y2=225 => y=15 hoặc y=-15
z2/36=9 =>z2=324 =>z=18 hoặc z=-18
\(x:y:z=4:5:6\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)và x2 - 2y2 + z2 = 18
\(\Rightarrow\frac{x}{4}=\frac{x^2}{4^2}=\frac{x^2}{16}\)
\(\Rightarrow\frac{y}{5}=\frac{2y^2}{2.5^2}=\frac{2y^2}{50}\)
\(\Rightarrow\frac{z}{6}=\frac{z^2}{6^2}=\frac{z^2}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
\(\frac{x^2}{16}=9\Rightarrow x^2=9.16=x^2=144\Rightarrow x=12\)
\(\frac{2y^2}{50}=9\Rightarrow2y^2=9.50=2y^2=450=y^2=450:2=y^2=225\Rightarrow y=15\)
\(\frac{z^2}{36}=9\Rightarrow z^2=9.36=z^2=324\Rightarrow z=18\)
Vậy......
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
bài 1 :
Ta có: 7x=4y ⇔ x/4=y/7
áp dụng tính chất dãy tỉ số bằng nhau ta có
x/4=y/7=(y-x)/(7-4)=100/3
⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3
bài 2
ta có x/5 = y/6 ⇔ x/20=y/24
y/8 = z/7 ⇔ y/24=z/21
⇒x/20=y/24=z/21
ADTCDTSBN(bài 1 có)
x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16
⇒x= 20 x 23/16 = 115/4
y= 24x 23/16=138/2
z=21x23/16=483/16
\(x:y:z=2:3:4\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và x+y-z=5 (1)
đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)(2)
thay (2) vào (1) ta được:\(2k+3k-4k=5\)
\(\Rightarrow k=5\)(3)
thay (3) vào (2), ta được:\(\hept{\begin{cases}x=2\cdot5=10\\y=3\cdot5=15\\z=4\cdot5=20\end{cases}}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(\Rightarrow\frac{x+y-z}{2+4-1}=\frac{5}{1}=5\)
\(\Rightarrow\frac{x}{2}=5\Rightarrow x=10\)
\(\Rightarrow\frac{y}{3}=5\Rightarrow y=15\)
\(\Rightarrow\frac{z}{4}=5\Rightarrow z=20\)