\(TimXv\text{à}Ya.\left(2-X\right)\left(X+1\right)=|Y+1|\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2023

Chắc phải có thêm điều kiện x; y nguyên nữa chứ em?

27 tháng 12 2015

b. \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\left(\frac{x}{2}\right)^3=\left(\frac{y}{4}\right)^3=\left(\frac{z}{6}\right)^3\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)

\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)

Theo t/c dảy tỉ số = nhau:

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

=> \(\frac{x^2}{4}=\frac{1}{4}\Rightarrow x^2=\frac{1}{4}.4=1=1^2=\left(-1\right)^2\Rightarrow x=\)+1

=> \(\frac{y^2}{16}=\frac{1}{4}\Rightarrow y^2=\frac{1}{4}.16=4=2^2=\left(-2\right)^2\Rightarrow y=\)+2

=> \(\frac{z^2}{36}=\frac{1}{4}\Rightarrow z^2=\frac{1}{4}.36=9=3^2=\left(-3\right)^2\Rightarrow z=\)+3

Vậy có 2 cặp (x;y;z) là: (1;2;3) và (-1;-2;-3).

a. Áp dụng t/c tỉ số = nhau làm tương tự.

17 tháng 10 2019

Hướng dẫn(hướng làm:v) :

Từ \(3\left(x-1\right)=2\left(y-2\right)\)

\(\Rightarrow\frac{x-1}{2}=\frac{y-2}{3}\)(1) (chia hai vế của đẳng thức trên cho 6)

Từ: \(4\left(y-2\right)=3\left(z-3\right)\)

\(\Rightarrow\frac{y-2}{3}=\frac{z-3}{4}\) (2) (chia cả hai vế của đẳng thức cho 12)

Từ (1) và (2) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)

Giờ thay x, y, z bởi cái bên trên vào giả thiết 2x + 3y - z = 50 để tìm k.

Tử đó thay ngược lại ta sẽ tìm được x, y, z.

P/s: Bên trên là hướng làm, khi tính toán có thể sai sót, bạn tự check lại. Mình bận nên ko thể làm full được.

15 tháng 10 2019

Xin lỗi các bn nhé đây mới là đề bài đúng vừa nãy mk viết sai mong các bn thông cảmleuleu

18 tháng 7 2018

Ta có : 

\(A=\left(-\frac{2}{5}x^2y\right)\left(\frac{15}{8}xy^2\right)\left(-x^3y^2\right)\)

\(\Rightarrow A=\left(-\frac{2}{5}.\frac{15}{8}\right)\left(x^2.x.-x^3\right)\left(y.y^2.y^2\right)\)

\(\Rightarrow A=-\frac{3}{4}.-x^6.y^5\)

\(\Rightarrow A=-\frac{3}{4}.\left(-1\right)x^6y^5\)

\(\Rightarrow A=\frac{3}{4}x^6y^5\)

Lại có : 

\(\frac{x}{3}=\frac{y}{2}\)và \(x+3y=3\)

ADTCDTSBN , ta có : 

\(\frac{x}{3}=\frac{y}{2}=\frac{3y}{6}=\frac{x+3y}{3+6}=\frac{3}{9}=\frac{1}{3}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\frac{1}{3}\\\frac{y}{2}=\frac{1}{3}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}.3=1\\y=\frac{1}{3}.2=\frac{2}{3}\end{cases}}}\)

Thay \(x=1;y=\frac{2}{3}\)vào A ta được : 

\(A=\frac{3}{4}.1^6.\left(\frac{2}{3}\right)^5\)

\(\Rightarrow A=\frac{3}{4}.\frac{32}{243}\)

\(\Rightarrow A=\frac{8}{81}\)

Vậy ...

18 tháng 7 2018

ta có hai cách giải

cách 1:

gọi x/3=y/2=k 

=> x=3k và y=2k

vì x+3y=3 => 3k+6k=3

=> 9k=3 => k=1/3

suy ra x=1 và y= 2/3 

* Thay vào x;y vào phép tính trên rồi tự tính nhé

nếu k cho mik mik sẽ gợi ý cách còn lại

THANKS

11 tháng 7 2019

Ta có: \(\hept{\begin{cases}\left|a\right|\ge0\\\left|b\right|\ge0\\\left|c\right|\ge0\end{cases}}\Rightarrow\left|a\right|+\left|b\right|+\left|c\right|\ge0\)

a)\(\Rightarrow\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|\ge0\)

\("="\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{2}{3}\\z=-\frac{11}{12}\end{cases}}\)

b) \(\Rightarrow\left|2-x\right|+\left|3-y\right|+\left|x+y+z\right|\ge0\)

\("="\Leftrightarrow\hept{\begin{cases}x=2\\y=3\\z=-5\end{cases}}\)

11 tháng 7 2019

a) \(\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|=0\)

Ta có: \(\left|\frac{1}{4}-x\right|\ge0\)với mọi x

\(\left|x-y+z\right|\ge0\)vơi mọi x, y, z

\(\left|\frac{2}{3}+y\right|\ge0\) với mọi y

\(\left|\frac{1}{4}-x\right|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|\ge0\) với nọi x, y, z

Dấu "=" xảy ra khi và chỉ khi" \(\hept{\begin{cases}\frac{1}{4}-x=0\\x-y+z=0\\\frac{2}{3}+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{2}{3}\\z=-\frac{11}{12}\end{cases}}\)

câu b cách làm giống như câu a

13 tháng 9 2017

ta có \(\left|x+2\right|+\left|x-1\right|=\left|x+2\right|+\left|1-x\right|\ge\left|x+2+1-x\right|=3\)

=> \(VT\ge3\)

mà \(3-\left(y+2\right)^2\le3\Rightarrow VP\le3\)

=> VT=VP=3 <=> ... cậu tự giải tiếp nhé

14 tháng 9 2017

thank nhieu nha