Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Để \(\dfrac{3}{-x^2+2x+4}\) đạt GTlN thì :
\(-x^2+2x+4\) phải đạt GTNN ( chắc ai cũng biết )
Ta có :
\(-x^2+2x+4\)
\(=-\left(x^2-2x+1-5\right)\)
\(=-\left(x-1\right)^2-5\)
Tới đây chắc bạn hỉu rồi nhỉ ?
\(P+1=\dfrac{8x+1}{4x^2+3}+1=\dfrac{8x+1+4x^2+3}{4x^2+3}=\dfrac{4\left(x+1\right)^2}{4x^2+3}\ge0\)\(P+1\ge0\Rightarrow P\ge-1\) tại x =-1
\(P-\dfrac{4}{3}=\dfrac{8x+1}{4x^2+3}-\dfrac{4}{3}=\dfrac{3.\left(8x+1\right)-4\left(4x^2+3\right)}{4x^2+3}=\dfrac{-\left(4x-3\right)^2}{4x^2+3}\le0\)
\(P-\dfrac{4}{3}\le0\Rightarrow P\le\dfrac{4}{3}\) khi x =3/4
Câu 1:
a: Để M là số nguyên thì \(2x^3-6x^2+x-3-5⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{4;2;8;-2\right\}\)
b: Để N là số nguyên thì \(3x^2+2x-3x-2+5⋮3x+2\)
\(\Leftrightarrow3x+2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{-\dfrac{1}{3};-1;1;-\dfrac{7}{3}\right\}\)
\(\left(\dfrac{x}{2}+3\right)\left(5-6x\right)+\left(12x-2\right)\left(\dfrac{x}{4}+3\right)=0\)
\(\dfrac{5x}{2}-3x^2+15-18x+3x^2+36x-\dfrac{x}{2}-6=0\)
\(\dfrac{5x}{2}-\dfrac{x}{2}+18x+9=0\)
\(20x+9=0\)
\(x=\dfrac{-9}{20}\)
Bài 1: Ta có: \(B=\dfrac{4+2\left|4-2x\right|}{5}\)
Do \(\left|4-2x\right|\ge0\left(\forall x\right)\Rightarrow2\left|4-2x\right|\ge0\left(\forall x\right)\)
Dấu "=" xảy ra \(\Leftrightarrow\left|4-2x\right|=0\Leftrightarrow x=2\)
\(\Rightarrow MinB=\dfrac{4+2.0}{5}=\dfrac{4}{5}\)
Vậy GTNN của \(B=\dfrac{4}{5}\Leftrightarrow x=2\)
Bài 2:a, \(A=\dfrac{12}{3+\left|5x+1\right|+\left|2y-1\right|}\)
Do \(\left|5x+1\right|\ge0\left(\forall x\right);\left|2y-1\right|\ge0\left(\forall y\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{5};y=\dfrac{1}{2}\)
\(\Rightarrow\left|5x+1\right|+\left|2y-1\right|\ge0\left(\forall x;y\right)\)
\(\Rightarrow3+\left|5x+1\right|+\left|2y-1\right|\ge3\left(\forall x;y\right)\)
\(\Rightarrow\dfrac{1}{3+\left|5x+1\right|+\left|2y-1\right|}\le\dfrac{1}{3}\left(\forall x;y\right)\)
\(\Rightarrow A=\dfrac{12}{3+\left|5x+1\right|+\left|2y-1\right|}\le4\left(\forall x;y\right)\)
Vậy Max A = 4 \(\Leftrightarrow x=-\dfrac{1}{5};y=\dfrac{1}{2}\)
b, \(B=\dfrac{5}{\left(4x^2+4x+1\right)+\left(y^2+2y+1\right)+1}=\dfrac{5}{\left(2x+1\right)^2+\left(y+1\right)^2+1}\)Bn tự cm: \(\left(2x+1\right)^2+\left(y+1\right)^2+1\ge1\left(\forall x;y\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{2};y=-1\)
Vậy ta cx dễ dàng tìm được: Max\(B=\dfrac{5}{0+0+1}=5\) \(\Leftrightarrow x=-\dfrac{1}{2};y=-1\)
a: \(=\dfrac{\left(2\cdot547+1\right)\cdot3}{547\cdot211}-\dfrac{546}{547\cdot211}-\dfrac{4}{547\cdot211}\)
\(=\dfrac{2735}{547\cdot211}=\dfrac{5}{211}\)
b: x=7 nên x+1=8
\(x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\)
\(=x^{15}-x^{14}\left(x+1\right)+x^{13}\left(x+1\right)-x^{12}\left(x+1\right)+...-x^2\left(x+1\right)+x\left(x+1\right)-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}-...-x^3-x^2+x^2+x-5\)
=x-5=7-5=2
\(T=\dfrac{8x+12}{x^2+4}=\dfrac{-\left(x^2+4\right)+\left(x^2+8x+16\right)}{x^2+4}\)
\(=\dfrac{\left(x+4\right)^2}{x^2+4}-1\text{≥}-1\)
Vậy Min\(=-1\text{⇔}x=-4\)
GTLN