\(\dfrac{-4x^2}{-\left(x-3\right)^2}\)\

Giải p...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Đặt \(x^2-6x-2=a\)

Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)

=>(a+2)(a+7)=0

\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)

=>x(x-6)(x-1)(x-5)=0

hay \(x\in\left\{0;1;6;5\right\}\)

c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)

\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)

\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)

\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)

=>26x=-3

hay x=-3/26

6 tháng 2 2018

1) điều kiện xác định : \(x\notin\left\{-1;-2;-3;-4\right\}\)

ta có : \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\) \(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+4\right)+\left(x+1\right)\left(x+4\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{x^2+7x+12+x^2+5x+4+x^2+3x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{3x^2+15x+18}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow6\left(3x^2+15x+18\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x^2+5x+6\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x+2\right)\left(x+3\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18=\left(x+1\right)\left(x+4\right)\) ( vì điều kiện xác định )

\(\Leftrightarrow18=x^2+5x+4\Leftrightarrow x^2+5x-14=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\left(tmđk\right)\)

vậy \(x=2\) hoặc \(x=-7\) mấy câu kia lm tương tự nha bn

12 tháng 2 2018

giải hết đống này chắc @@ quá,để tối đi,giờ t đi làm mấy bài ngắn ngắn

12 tháng 2 2018

tuỳ bạn, qua Tết mik đăng lại

13 tháng 2 2019

Bài 17)

(x - 2)^4 + (x - 6)^4 = 82
Đặt t = x + 3
=> x + 2 = t - 1; x + 4 = t + 1.
ta có pt: (t - 1)^4 + (t + 1)^4 = 82
<=>[(t -1)²]² + [(t + 1)²]² = 82
<=> (t² - 2t + 1)² + (t² + 2t + 1)² = 82
<=> (t²+1)² - 4t(t²+1) + 4t² + (t²+1)² + 4t(t²+1) + 4t² = 82
<=> (t² + 1)² + 4t² = 41
<=> t^4 + 6t² + 1 = 41
<=> (t²)² + 6t² - 40 = 0
<=> t² = -10 (loại) hoặc t² = 4
<=> t = 2 hoặc t = -2
với t = -2 => x = -5
với t = 2 => x = -1
vậy pt có hai nghiệm là : x = -1 hoặc x = -5

13 tháng 2 2019

Bài 18: Phương trình đã cho được viết thành: $${({x^2} + 6x + 10)^2} + (x + 3)\left[ {3\left( {{x^2} + 6x + 10} \right) + 2\left( {x + 3} \right)} \right] = 0$$
Đặt $u = {x^2} + 6x + 10 > 0,v = x + 3$, suy ra:
$${u^2} + v\left( {3u + 2v} \right) = 0 \Leftrightarrow \left( {u + v} \right)\left( {u + 2v} \right) = 0 \Leftrightarrow \left[ \begin{gathered}
u + v = 0 \\
u + 2v = 0 \\
\end{gathered} \right.$$
$$ \Leftrightarrow \left[ \begin{gathered}
{x^2} + 6x + 10 + x + 3 = 0 \\
{x^2} + 6x + 10 + 2\left( {x + 3} \right) = 0 \\
\end{gathered} \right. \Leftrightarrow \left[ \begin{gathered}
{x^2} + 7x + 13 = 0 \\
{x^2} + 8x + 16 = 0 \\
\end{gathered} \right. \Leftrightarrow x = - 4$$

1. tính a) \(\left(\dfrac{2}{3}x-\dfrac{3}{2}y\right)^2\) b) \(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}\right)^2\) c) \(\left(x+\dfrac{1}{5}y^2\right)\left(x-\dfrac{1}{5}y^2\right)\) d) \(\left(\dfrac{1}{2}x-2y\right)^3\) e) \(\left(-\dfrac{1}{2}xy^2+x\right)^3\) f) \(27x^3-8y^3\) g) 4(2x - 3y) - 4 - (2x-3y)2 2. rút gọn a) \(2m\left(5m+2\right)+\left(2m-3\right)\left(3m-1\right)\) b) \(\left(2x+4\right)\left(8x-3\right)-\left(4x+1\right)^2\) c)...
Đọc tiếp

1. tính

a) \(\left(\dfrac{2}{3}x-\dfrac{3}{2}y\right)^2\)

b) \(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}\right)^2\)

c) \(\left(x+\dfrac{1}{5}y^2\right)\left(x-\dfrac{1}{5}y^2\right)\)

d) \(\left(\dfrac{1}{2}x-2y\right)^3\)

e) \(\left(-\dfrac{1}{2}xy^2+x\right)^3\)

f) \(27x^3-8y^3\)

g) 4(2x - 3y) - 4 - (2x-3y)2

2. rút gọn

a) \(2m\left(5m+2\right)+\left(2m-3\right)\left(3m-1\right)\)

b) \(\left(2x+4\right)\left(8x-3\right)-\left(4x+1\right)^2\)

c) \(\left(7y-2\right)^2-\left(7y+1\right)\left(7y-1\right)\)

d) \(\left(a+2\right)^3-a\left(a-3\right)^2\)

3. c/m các biểu thức sau ko phụ thuộc vào biến x,y

a) \(\left(2x-5\right)\left(2x+5\right)-\left(2x-3\right)^2-12x\)

b) \(\left(2y-1\right)^3-2y\left(2y-3\right)^2-6y\left(2y-2\right)\)

c) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(20+x^3\right)\)

d) \(3y\left(-3y-2\right)^2-\left(3y-1\right)\left(9y^2+3y+1\right)-\left(-6y-1\right)^2\)

4. Tìm x

a) \(\left(2x+5\right)\left(2x-7\right)-\left(-4x-3\right)^2=16\)

b) \(\left(8x^2+3\right)\left(8x^2-3\right)-\left(8x^2-1\right)^2=22\)

c) \(49x^2+14x+1=0\)

d) \(\left(x-1\right)^3-x\left(x-2\right)^2-\left(x-2\right)=0\)

5. c/m biểu thức luôn dương:

a) \(A=16x^2+8x+3\)

b) \(B=y^2-5y+8\)

c) C= \(2x^2-2x+2\)

d) \(D=9x^2-6x+25y^2+10y+4\)

6. Tìm GTLN và GTNN của các biểu thức sau

a) \(M=x^2+6x-1\)

b) \(N=10y-5y^2-3\)

7. thu gọn

a) \(\left(2+1\right)\left(2^2+1\right)\left(2^3+1\right)...\left(2^{32}+1\right)-2^{64}\)

b) \(\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{\text{64}}+3^{64}\right)+\dfrac{5^{128}-3^{128}}{2}\)

2
9 tháng 9 2017

Bạn đăng từ từ thôi!

Dài quá

28 tháng 6 2017

Quy đồng mẫu thức nhiều phân thức

Quy đồng mẫu thức nhiều phân thức

11 tháng 4 2018

2.a)

\(2x\left(6x-1\right)>\left(3x-2\right)\left(4x+3\right)\)

\(\Leftrightarrow12x^2-2x>12x^2+9x-8x-6\)

\(\Leftrightarrow12x^2-2x-12x^2-9x+8x>6\)

\(\Leftrightarrow-3x>6\)

\(\Leftrightarrow3>\dfrac{6}{-3}\)

\(\Leftrightarrow x< -2\)

Vậy nghiệm của bpt \(S=\left\{-2\right\}\)

11 tháng 4 2018

2.b)

\(\dfrac{2\left(x+1\right)}{3}-2\ge\dfrac{x-2}{2}\)

\(\Leftrightarrow4\left(x+1\right)-2.6\ge3x-6\)

\(\Leftrightarrow4x+4-12\ge3x-6\)

\(\Leftrightarrow4x-3x\ge-6-4+12\)

\(\Leftrightarrow x\ge2\)

vậy nghiệm của bpt x\(\ge\)2