Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(y^2+1-y^2-1+y-9=0\)0
y-9 = 0
vậy y = 9
b)
\(y^3+8-y^3+2y\)= 15
8 + 2y = 15
2y = 7
vậy y = 7/2 = 3,5
cho mình nhé
a)
Ta có \(y^2+1-\left(y+1\right)\left(y-1\right)+y-9=0\)
\(\Leftrightarrow y^2+1-y^2+1+y-9=0\)
\(\Leftrightarrow y-7=0\)
\(\Leftrightarrow y=7\)
Vậy y=7
b)
Ta có \(\left(y+2\right)\left(y^2-2y+4\right)-y\left(y^2+2\right)=15\)
\(\Leftrightarrow y^3+8-y^3-2y=15\)
\(\Leftrightarrow8-2y=15\)
\(\Leftrightarrow2y=-7\)\(\Leftrightarrow y=-\frac{7}{2}\)
Vậy \(y=-\frac{7}{2}\)
a) \(\left(3x-5\right)\left(5-3x\right)+9\left(x+1\right)^2=30\)
\(\Rightarrow15x-9x^2-25+15x+9\left(x^2+2x+1\right)-30=0\)
\(\Rightarrow30x-9x^2-25+9x^2+18x+9-30=0\)
\(\Rightarrow48x-46=0\)
\(\Rightarrow x=\frac{23}{24}\)
b) \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
\(\Rightarrow\left(x^2+8x+16\right)-\left(x^2-1\right)=16\)
\(\Rightarrow x^2+8x+16-x^2+1=16\)
\(\Rightarrow8x+17=16\)
\(\Rightarrow8x=-1\)
\(\Rightarrow x=\frac{-1}{8}\)
c) \(\left(y-2\right)^3-\left(y-3\right)\left(y^2+3y+9\right)+6\left(y+1\right)^2=49\)
\(\Rightarrow\left(y-2\right)^3-\left(y^3-3^3\right)+6\left(y^2+2y+1\right)=49\)
\(\Rightarrow y^3-6y^2+12y-8-y^3+27+6y^2+12y+6=49\)
\(\Rightarrow\left(y^3-y^3\right)+\left(-6y^2+6y^2\right)+\left(12y+12y\right)+\left(-8+27+6\right)=49\)
\(\Rightarrow24y+25=49\)
\(\Rightarrow24y=24\)
\(\Rightarrow y=1\)
d) \(\left(y+3\right)^3-\left(y+1\right)^3=56\)
\(\Rightarrow\left(y+3-y-1\right)[\left(y+3\right)^2+\left(y+3\right)\left(y+1\right)+\left(y+1\right)^2]=56\)
\(\Rightarrow2\left(y^2+6y+9+y^2+4y+3+y^2+2y+1\right)=56\)
\(\Rightarrow3y^2+12y+13=28\)
\(\Rightarrow\left(3y^2+15y\right)-\left(3y+15\right)=0\)
\(\Rightarrow3y\left(y+5\right)-3\left(y+5\right)=0\)
\(\Rightarrow3\left(y-1\right)\left(y+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
Trả lời:
7, 5( x + y )2 + 15( x + y )
= 5( x + y )( x + y + 3 )
9, 7x( y - 4 )2 - ( 4 - y )3
= 7x ( 4 - y )2 - ( 4 - y )
= ( 4 - y )2 ( 7x - 4 + y )
11, ( x + 1 )( y - 2 ) - ( 2 - y )2
= ( x + 1 )( y - 2 ) - ( y - 2 )2
= ( y - 2 )( x + 1 - y + 2 )
= ( y - 2 )( x - y + 3 )
8, 9x ( x - y ) - 10 ( y - x )2
= 9x ( x - y ) - 10 ( x - y )2
= ( x - y )[ ( 9x - 10 ( x - y ) ]
= ( x - y )( 9x - 10x + 10y )
= ( x - y )( 10y - x )
10, ( a - b )2 - ( a + b )( b - a )
= ( b - a )2 - ( a + b )( b - a )
= ( b - a )( b - a - a - b )
= - 2a( b - a )
= 2a ( a - b )
12, 2x ( x - 3 ) + y ( x - 3 ) + ( 3 - x )
= 2x ( x - 3 ) + y ( x - 3 ) - ( x - 3 )
= ( x - 3 )( 2x + y - 1 )
ĐKXĐ: y<>0
\(y^2\left[\dfrac{1}{y\left(y-1\right)+1}-\dfrac{1}{y\left(y+1\right)+1}\right]=\dfrac{3}{y\left(y^4+y^2+1\right)}+\dfrac{2y-2}{y^2-y+1}\)
=>\(y^2\cdot\dfrac{y\left(y+1\right)+1-y\left(y-1\right)-1}{\left(y^2-y+1\right)\left(y^2+y+1\right)}=\dfrac{3}{y\left(y^2-y+1\right)\left(y^2+y+1\right)}+\dfrac{2y-2}{y^2-y+1}\)
=>\(y^2\cdot\dfrac{y\left(y+1-y+1\right)}{\left(y^2-y+1\right)\left(y^2+y+1\right)}=\dfrac{3+\left(2y-2\right)\cdot y\left(y^2+y+1\right)}{y\left(y^2-y+1\right)\left(y^2+y+1\right)}\)
=>\(y^2\cdot\dfrac{y\cdot2\cdot y}{\left(y^2-y+1\right)\cdot\left(y^2+y+1\right)\cdot y}=\dfrac{3+2y\left(y-1\right)\left(y^2+y+1\right)}{y\left(y^2-y+1\right)\left(y^2+y+1\right)}\)
=>\(2y^2\cdot y^2=3+2y\left(y^3-1\right)\)
=>\(2y^4=3+2y^4-2y\)
=>3-2y=0
=>2y=3
=>\(y=\dfrac{3}{2}\left(nhận\right)\)