K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2021

a) ĐKXĐ : \(y\ne\pm1\)

 \(N=\left(\frac{1}{y-1}-\frac{y}{1-y^3}.\frac{y^2+y+1}{y+1}\right)\div\frac{1}{y^2-1}\)

\(=\left(\frac{1}{y-1}+\frac{y}{\left(y-1\right)\left(y^2+y+1\right)}.\frac{y^2+y+1}{y+1}\right)\div\frac{1}{y^2-1}\)

\(=\left(\frac{1}{y-1}+\frac{y}{\left(y-1\right)\left(y+1\right)}\right)\div\frac{1}{y^2-1}\)

\(=\frac{y+1+y}{\left(y-1\right)\left(y+1\right)}\div\frac{1}{\left(y-1\right)\left(y+1\right)}\)

\(=\frac{2y+1}{\left(y-1\right)\left(y+1\right)}.\left(y-1\right)\left(y+1\right)\)

\(=2y+1\)

Vậy \(N=2y+1\)khi \(y\ne\pm1\)

b) Với \(y=\frac{1}{2}\); phương trình N trở thành :

\(N=2.\frac{1}{2}+1=2\)

Vậy N=2 khi \(y=\frac{1}{2}\)

c) Để N luôn dương

\(\Leftrightarrow2y+1>0\)

\(\Leftrightarrow2y>-1\)

\(\Leftrightarrow y>\frac{-1}{2}\)

Kết hợp ĐKXĐ ta có : \(y>\frac{-1}{2};y\ne\pm1\)

Vậy N luôn dương khi \(y>\frac{-1}{2};y\ne\pm1\)
 

6 tháng 12 2020

a, \(N=\left(\frac{1}{y-1}-\frac{y}{1-y^3}.\frac{y^2+y+1}{y+1}\right):\frac{1}{y^2-1}\)

\(=\left(\frac{1}{y-1}-\frac{y}{\left(1-y\right)\left(1+y+y^2\right)}.\frac{y^2+y+1}{y+1}\right):\frac{1}{\left(y-1\right)\left(y+1\right)}\)

\(=\left(\frac{1}{y-1}+\frac{y\left(y^2+y+1\right)}{\left(y+1\right)^2\left(y^2+y+1\right)}\right):\frac{1}{\left(y-1\right)\left(y+1\right)}\)

\(=\left(\frac{1}{y-1}+\frac{y}{\left(y+1\right)^2}\right):\frac{1}{\left(y-1\right)\left(x+1\right)}\)

\(=\left(\frac{\left(y+1\right)^2+y\left(y-1\right)}{\left(y-1\right)\left(y+1\right)^2}\right).\frac{\left(y-1\right)\left(y+1\right)}{1}=\frac{y^2+2y+1+y^2-y}{y+1}=\frac{2y^2+y+1}{y+1}\)

b, Thay y = 1/2 ta có : 

\(\frac{2.\left(\frac{1}{2}\right)^2+\frac{1}{2}+1}{\frac{1}{2}+1}=\frac{\frac{1}{2}+\frac{1}{2}+\frac{2}{2}}{\frac{1}{2}+\frac{2}{2}}=\frac{\frac{5}{2}}{\frac{3}{2}}=\frac{5}{12}\)

7 tháng 12 2018

a., đk y khác cộng trừ 1

N=\(\left(\frac{1}{y-1}+\frac{y}{\left(y^3-1\right)}.\frac{y^2+y+1}{y+1}\right):\frac{1}{\left(y-1\right)\left(y+1\right)}\)

N=\(\left(\frac{1}{y-1}+\frac{y}{\left(y-1\right)\left(y+1\right)}\right).\left(y-1\right)\left(y+1\right)\)

N=\(\frac{y+1+y}{\left(y-1\right)\left(y+1\right)}.\left(y-1\right)\left(y+1\right)\)

N= \(2y+1\)

Vậy N=2y+1 với y khác cộng trừ 1

b, Thay y= \(\frac{1}{2}\) ( t/m đk y khác cộng trừ 1 )vào biểu thức N ta được:

N= \(2.\frac{1}{2}+1=1+1=2\) 

Vậy N=2 với y = 1/2

c, Để N luôn dương thì: 2y+1>0

<=> 2y>-1

<=>y>\(\frac{-1}{2}\)( t/ m đk y khác cộng trừ 1)

Vậy với y>-1/2 thì N luôn dương

7 tháng 12 2018

a, \(N=\left(\frac{1}{y-1}-\frac{y}{1-y^3}.\frac{y^2+y+1}{y+1}\right):\frac{1}{y^2-1}\)

\(N=\left(\frac{1}{y-1}+\frac{y}{y^3-1}.\frac{y^2+y+1}{y+1}\right):\frac{1}{y^2-1}\)

\(N=\left(\frac{1}{y-1}+\frac{y}{\left(y-1\right)\left(y^2+y+1\right)}.\frac{y^2+y+1}{y+1}\right):\frac{1}{y^2-1}\)

\(N=\left(\frac{1}{y-1}+\frac{y}{\left(y-1\right)\left(y+1\right)}\right):\frac{1}{y^2-1}\)

\(N=\left(\frac{y+1}{\left(y-1\right)\left(y+1\right)}+\frac{y}{\left(y-1\right)\left(y+1\right)}\right):\frac{1}{\left(y-1\right)\left(y+1\right)}\)

\(N=\frac{y+1+y}{\left(y-1\right)\left(y+1\right)}:\frac{1}{\left(y-1\right)\left(y+1\right)}\)

\(N=\frac{2y+1}{\left(y-1\right)\left(y+1\right)}.\left(y-1\right)\left(y+1\right)\)

\(N=2y+1\)

b, Tại \(y=\frac{1}{2}\) ta có :

             \(N=2.\frac{1}{2}+1\)

\(\Rightarrow N=1+1=2\)

c, Để N luôn có giá trị dương thì \(y\in N\).

6 tháng 12 2019

qqwweerrttyyuuiioopp

âsđffgghhjjkkll

zzxxccvvbbnnmm

14 tháng 11 2019

a)\(N=\left(\frac{x^2}{x^2-y^2}+\frac{y}{x-y}\right):\frac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)

\(=\left(\frac{x^2}{\left(x-y\right)\left(x+y\right)}+\frac{xy+y^2}{\left(x-y\right)\left(x+y\right)}\right):\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x^4-y^4\right)\left(x-y\right)}\)

\(=\frac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}:\frac{\left(x^2+xy+y^2\right)}{x^4-y^4}\)

\(=\frac{x^4-y^4}{\left(x-y\right)\left(x+y\right)}\)

\(=\frac{\left(x^2+y^2\right)\left(x^2-y^2\right)}{x^2-y^2}=x^2+y^2\)

b) Ta có: \(x+y=\frac{1}{40}\)

\(\Rightarrow\left(x+y\right)^2=\frac{1}{1600}\)

\(\Rightarrow x^2+2xy+y^2=\frac{1}{1600}\)

\(\Rightarrow x^2-\frac{1}{40}+y^2=\frac{1}{1600}\)

\(\Rightarrow x^2+y^2=\frac{1}{1600}+\frac{1}{40}\)

\(\Rightarrow x^2+y^2=\frac{41}{1600}\)

Vậy \(N=\frac{41}{1600}\)

27 tháng 12 2018

\(3,\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}:\left[\left(\frac{1}{x}\right)^2-2.\frac{1}{x}.\frac{1}{y}+\left(\frac{1}{y}\right)^2\right]-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}:\left[\frac{1}{x^2}-\frac{2}{xy}+\frac{1}{y^2}\right]-\frac{x^2+y^2}{x^2-2xy+y^2}\)

\(=\frac{2}{xy}:\left[\frac{y^2-2.xy+x^2}{x^2y^2}\right]-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}.\frac{x^2y^2}{x^2-2xy+y^2}-\frac{x^2+y^2}{x^2-2xy+y^2}\)

\(=\frac{2xy}{x^2-2xy+y^2}+\frac{-x^2-y^2}{x^2-2xy-y^2}\)

\(=\frac{2xy-x^2-y^2}{x^2-2xy+y^2}=\frac{-\left(x^2-2xy+y^2\right)}{x^2-2xy+y^2}=-1\)

28 tháng 12 2018

\(\frac{2011^3+11^3}{2011^3+2000^3}\)

\(=\frac{\left(2011+11\right)\left(2011^2-2011.11+11^2\right)}{\left(2011+2000\right)\left(2011^2-2011.2000+2000^2\right)}\)

\(=\frac{\left(2011+11\right)\left[2011^2-11\left(2011-11\right)\right]}{\left(2011+2000\right)\left[2011^2-2000\left(2011-2000\right)\right]}\)

\(=\frac{\left(2011+11\right)\left(2011^2-11.2000\right)}{\left(2011+2000\right)\left(2011^2-2000.11\right)}\)

\(=\frac{2011+11}{2011+2000}\left(2011^2-11.2000\ne0\right)\)

                                          đpcm