Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(N=\left(\frac{1}{y-1}-\frac{y}{1-y^3}.\frac{y^2+y+1}{y+1}\right):\frac{1}{y^2-1}\)
\(=\left(\frac{1}{y-1}-\frac{y}{\left(1-y\right)\left(1+y+y^2\right)}.\frac{y^2+y+1}{y+1}\right):\frac{1}{\left(y-1\right)\left(y+1\right)}\)
\(=\left(\frac{1}{y-1}+\frac{y\left(y^2+y+1\right)}{\left(y+1\right)^2\left(y^2+y+1\right)}\right):\frac{1}{\left(y-1\right)\left(y+1\right)}\)
\(=\left(\frac{1}{y-1}+\frac{y}{\left(y+1\right)^2}\right):\frac{1}{\left(y-1\right)\left(x+1\right)}\)
\(=\left(\frac{\left(y+1\right)^2+y\left(y-1\right)}{\left(y-1\right)\left(y+1\right)^2}\right).\frac{\left(y-1\right)\left(y+1\right)}{1}=\frac{y^2+2y+1+y^2-y}{y+1}=\frac{2y^2+y+1}{y+1}\)
b, Thay y = 1/2 ta có :
\(\frac{2.\left(\frac{1}{2}\right)^2+\frac{1}{2}+1}{\frac{1}{2}+1}=\frac{\frac{1}{2}+\frac{1}{2}+\frac{2}{2}}{\frac{1}{2}+\frac{2}{2}}=\frac{\frac{5}{2}}{\frac{3}{2}}=\frac{5}{12}\)
a., đk y khác cộng trừ 1
N=\(\left(\frac{1}{y-1}+\frac{y}{\left(y^3-1\right)}.\frac{y^2+y+1}{y+1}\right):\frac{1}{\left(y-1\right)\left(y+1\right)}\)
N=\(\left(\frac{1}{y-1}+\frac{y}{\left(y-1\right)\left(y+1\right)}\right).\left(y-1\right)\left(y+1\right)\)
N=\(\frac{y+1+y}{\left(y-1\right)\left(y+1\right)}.\left(y-1\right)\left(y+1\right)\)
N= \(2y+1\)
Vậy N=2y+1 với y khác cộng trừ 1
b, Thay y= \(\frac{1}{2}\) ( t/m đk y khác cộng trừ 1 )vào biểu thức N ta được:
N= \(2.\frac{1}{2}+1=1+1=2\)
Vậy N=2 với y = 1/2
c, Để N luôn dương thì: 2y+1>0
<=> 2y>-1
<=>y>\(\frac{-1}{2}\)( t/ m đk y khác cộng trừ 1)
Vậy với y>-1/2 thì N luôn dương
a, \(N=\left(\frac{1}{y-1}-\frac{y}{1-y^3}.\frac{y^2+y+1}{y+1}\right):\frac{1}{y^2-1}\)
\(N=\left(\frac{1}{y-1}+\frac{y}{y^3-1}.\frac{y^2+y+1}{y+1}\right):\frac{1}{y^2-1}\)
\(N=\left(\frac{1}{y-1}+\frac{y}{\left(y-1\right)\left(y^2+y+1\right)}.\frac{y^2+y+1}{y+1}\right):\frac{1}{y^2-1}\)
\(N=\left(\frac{1}{y-1}+\frac{y}{\left(y-1\right)\left(y+1\right)}\right):\frac{1}{y^2-1}\)
\(N=\left(\frac{y+1}{\left(y-1\right)\left(y+1\right)}+\frac{y}{\left(y-1\right)\left(y+1\right)}\right):\frac{1}{\left(y-1\right)\left(y+1\right)}\)
\(N=\frac{y+1+y}{\left(y-1\right)\left(y+1\right)}:\frac{1}{\left(y-1\right)\left(y+1\right)}\)
\(N=\frac{2y+1}{\left(y-1\right)\left(y+1\right)}.\left(y-1\right)\left(y+1\right)\)
\(N=2y+1\)
b, Tại \(y=\frac{1}{2}\) ta có :
\(N=2.\frac{1}{2}+1\)
\(\Rightarrow N=1+1=2\)
c, Để N luôn có giá trị dương thì \(y\in N\).
a)\(N=\left(\frac{x^2}{x^2-y^2}+\frac{y}{x-y}\right):\frac{x^3-y^3}{x^5-x^4y-xy^4+y^5}\)
\(=\left(\frac{x^2}{\left(x-y\right)\left(x+y\right)}+\frac{xy+y^2}{\left(x-y\right)\left(x+y\right)}\right):\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x^4-y^4\right)\left(x-y\right)}\)
\(=\frac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}:\frac{\left(x^2+xy+y^2\right)}{x^4-y^4}\)
\(=\frac{x^4-y^4}{\left(x-y\right)\left(x+y\right)}\)
\(=\frac{\left(x^2+y^2\right)\left(x^2-y^2\right)}{x^2-y^2}=x^2+y^2\)
b) Ta có: \(x+y=\frac{1}{40}\)
\(\Rightarrow\left(x+y\right)^2=\frac{1}{1600}\)
\(\Rightarrow x^2+2xy+y^2=\frac{1}{1600}\)
\(\Rightarrow x^2-\frac{1}{40}+y^2=\frac{1}{1600}\)
\(\Rightarrow x^2+y^2=\frac{1}{1600}+\frac{1}{40}\)
\(\Rightarrow x^2+y^2=\frac{41}{1600}\)
Vậy \(N=\frac{41}{1600}\)
\(3,\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\left[\left(\frac{1}{x}\right)^2-2.\frac{1}{x}.\frac{1}{y}+\left(\frac{1}{y}\right)^2\right]-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\left[\frac{1}{x^2}-\frac{2}{xy}+\frac{1}{y^2}\right]-\frac{x^2+y^2}{x^2-2xy+y^2}\)
\(=\frac{2}{xy}:\left[\frac{y^2-2.xy+x^2}{x^2y^2}\right]-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}.\frac{x^2y^2}{x^2-2xy+y^2}-\frac{x^2+y^2}{x^2-2xy+y^2}\)
\(=\frac{2xy}{x^2-2xy+y^2}+\frac{-x^2-y^2}{x^2-2xy-y^2}\)
\(=\frac{2xy-x^2-y^2}{x^2-2xy+y^2}=\frac{-\left(x^2-2xy+y^2\right)}{x^2-2xy+y^2}=-1\)
\(\frac{2011^3+11^3}{2011^3+2000^3}\)
\(=\frac{\left(2011+11\right)\left(2011^2-2011.11+11^2\right)}{\left(2011+2000\right)\left(2011^2-2011.2000+2000^2\right)}\)
\(=\frac{\left(2011+11\right)\left[2011^2-11\left(2011-11\right)\right]}{\left(2011+2000\right)\left[2011^2-2000\left(2011-2000\right)\right]}\)
\(=\frac{\left(2011+11\right)\left(2011^2-11.2000\right)}{\left(2011+2000\right)\left(2011^2-2000.11\right)}\)
\(=\frac{2011+11}{2011+2000}\left(2011^2-11.2000\ne0\right)\)
đpcm
a) ĐKXĐ : \(y\ne\pm1\)
\(N=\left(\frac{1}{y-1}-\frac{y}{1-y^3}.\frac{y^2+y+1}{y+1}\right)\div\frac{1}{y^2-1}\)
\(=\left(\frac{1}{y-1}+\frac{y}{\left(y-1\right)\left(y^2+y+1\right)}.\frac{y^2+y+1}{y+1}\right)\div\frac{1}{y^2-1}\)
\(=\left(\frac{1}{y-1}+\frac{y}{\left(y-1\right)\left(y+1\right)}\right)\div\frac{1}{y^2-1}\)
\(=\frac{y+1+y}{\left(y-1\right)\left(y+1\right)}\div\frac{1}{\left(y-1\right)\left(y+1\right)}\)
\(=\frac{2y+1}{\left(y-1\right)\left(y+1\right)}.\left(y-1\right)\left(y+1\right)\)
\(=2y+1\)
Vậy \(N=2y+1\)khi \(y\ne\pm1\)
b) Với \(y=\frac{1}{2}\); phương trình N trở thành :
\(N=2.\frac{1}{2}+1=2\)
Vậy N=2 khi \(y=\frac{1}{2}\)
c) Để N luôn dương
\(\Leftrightarrow2y+1>0\)
\(\Leftrightarrow2y>-1\)
\(\Leftrightarrow y>\frac{-1}{2}\)
Kết hợp ĐKXĐ ta có : \(y>\frac{-1}{2};y\ne\pm1\)
Vậy N luôn dương khi \(y>\frac{-1}{2};y\ne\pm1\)