Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(P=\sqrt{x^2+\left(y+1\right)^2}+\sqrt{x^2+\left(y-3\right)^2}\ge\sqrt{\left(y+1\right)^2}+\sqrt{\left(3-y\right)^2}\)
\(=\left|y+1\right|+\left|3-y\right|\ge\left|y+1+3-y\right|=4\).
Xảy ra đẳng thức khi và chỉ khi x = 0 , \(\left(y+1\right)\left(3-y\right)\ge0\text{ và }2x-y=2\)=> y = -2 (loại)
Bạn xem lại đề bài
\(\hept{\begin{cases}3x^2-2y^2-xy+12x-17y-15=0\left(1\right)\\\sqrt{2-x}+\sqrt{6-x-x^2}=y+\sqrt{2y+5}-\sqrt{y+4}\left(2\right)\end{cases}}\)
PT (1) \(\Leftrightarrow3x^2-x\left(y-12\right)-2y^2-17y-15=0\)
\(\Leftrightarrow\Delta=\left(y-12\right)^2+4\cdot3\cdot\left(2y^2+17y+15\right)\)
\(\Leftrightarrow\Delta=y^2-24y+144+24y^2+204y+180\)
\(\Leftrightarrow\Delta=25y^2+180y+324\)
\(\Delta=\left(5y+18\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{y-12+5y+18}{3}=2y+2\\x=\frac{y-12-5y-18}{3}=\frac{-4y}{3}-10\end{cases}}\)
\(x=2y+2\)
\(\Leftrightarrow\sqrt{2-x}+\sqrt{6-x-x^2}=y+\sqrt{2y+5}-\sqrt{y+4}\)
\(\Leftrightarrow\sqrt{-2y}+\sqrt{6-2y-2-4y^2-8y-4}=y+\sqrt{2y+5}-\sqrt{y+4}\)
\(\Leftrightarrow\sqrt{-2y}+\sqrt{-4y^2-10y+0}=y+\sqrt{2y+5}-\sqrt{y+6}\)
\(\Leftrightarrow y=0\Rightarrow x=2\)
Vậy (x;y)=(2;0)
Áp dụng cosi có:
\(\sqrt{x\left(2x+y\right)}=\dfrac{1}{\sqrt{3}}\sqrt{3x\left(2x+y\right)}\le\dfrac{1}{\sqrt{3}}.\dfrac{5x+y}{2}\)
\(\sqrt{y\left(2y+x\right)}\le\dfrac{1}{\sqrt{3}}.\dfrac{5y+x}{2}\)
\(\Rightarrow P\ge\dfrac{x+y}{\dfrac{1}{2\sqrt{3}}\left(6x+6y\right)}=\dfrac{\sqrt{3}}{3}\)
Dấu = xảy ra khi x=y
Bài này áp dụng bunhia :v
Áp dụng bunhia với 2 cặp số `(sqrtx,sqrty),(sqrt{2x+y},sqrt{2y+x})`
`(x+y)(2x+y+2y+x)>=(sqrt{x(2x+y)}+sqrt{y(2y+x)})^{2}`
`<=>3(x+y)^{2}>=(sqrt{x(2x+y)}+sqrt{y(2y+x)})^{2}`
`=>sqrt{x(2x+y)}+sqrt{(2y+x)}<=sqrt3(x+y)`
`=>P>=1/sqrt3`
Dấu "="`<=>x=y`
ĐK \(y^2\ge9\)
\(PT\Leftrightarrow\sqrt{y^2-9}=6-2y\)
Bình phương 2 vế ta được
\(y^2-9=36-24y+4y^2\)
\(\Leftrightarrow3y^2-24y+45=0\)
\(\Leftrightarrow y^2-8y+15=0\)
\(\Leftrightarrow\left(y-3\right)\left(y-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y-3=0\\y-5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=3\\y=5\end{cases}}\)
Vậy..................
\(y=5\) không đúng (thử thế y vào là biết)