K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐK \(y^2\ge9\)

\(PT\Leftrightarrow\sqrt{y^2-9}=6-2y\)

Bình phương 2 vế ta được

\(y^2-9=36-24y+4y^2\)

\(\Leftrightarrow3y^2-24y+45=0\)

\(\Leftrightarrow y^2-8y+15=0\)

\(\Leftrightarrow\left(y-3\right)\left(y-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y-3=0\\y-5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=3\\y=5\end{cases}}\)

Vậy..................

13 tháng 8 2019

\(y=5\) không đúng (thử thế y vào là biết)

17 tháng 11 2015

Ta có:

\(P=\sqrt{x^2+\left(y+1\right)^2}+\sqrt{x^2+\left(y-3\right)^2}\ge\sqrt{\left(y+1\right)^2}+\sqrt{\left(3-y\right)^2}\)

\(=\left|y+1\right|+\left|3-y\right|\ge\left|y+1+3-y\right|=4\).

Xảy ra đẳng thức khi và chỉ khi x = 0 , \(\left(y+1\right)\left(3-y\right)\ge0\text{ và }2x-y=2\)=>  y = -2 (loại)

Bạn xem lại đề bài 

 

 

 

26 tháng 6 2020

\(\hept{\begin{cases}3x^2-2y^2-xy+12x-17y-15=0\left(1\right)\\\sqrt{2-x}+\sqrt{6-x-x^2}=y+\sqrt{2y+5}-\sqrt{y+4}\left(2\right)\end{cases}}\)

PT (1) \(\Leftrightarrow3x^2-x\left(y-12\right)-2y^2-17y-15=0\)

\(\Leftrightarrow\Delta=\left(y-12\right)^2+4\cdot3\cdot\left(2y^2+17y+15\right)\)

\(\Leftrightarrow\Delta=y^2-24y+144+24y^2+204y+180\)

\(\Leftrightarrow\Delta=25y^2+180y+324\)

\(\Delta=\left(5y+18\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{y-12+5y+18}{3}=2y+2\\x=\frac{y-12-5y-18}{3}=\frac{-4y}{3}-10\end{cases}}\)

\(x=2y+2\)

\(\Leftrightarrow\sqrt{2-x}+\sqrt{6-x-x^2}=y+\sqrt{2y+5}-\sqrt{y+4}\)

\(\Leftrightarrow\sqrt{-2y}+\sqrt{6-2y-2-4y^2-8y-4}=y+\sqrt{2y+5}-\sqrt{y+4}\)

\(\Leftrightarrow\sqrt{-2y}+\sqrt{-4y^2-10y+0}=y+\sqrt{2y+5}-\sqrt{y+6}\)

\(\Leftrightarrow y=0\Rightarrow x=2\)

Vậy (x;y)=(2;0)

23 tháng 5 2021

Áp dụng cosi có:

\(\sqrt{x\left(2x+y\right)}=\dfrac{1}{\sqrt{3}}\sqrt{3x\left(2x+y\right)}\le\dfrac{1}{\sqrt{3}}.\dfrac{5x+y}{2}\)

\(\sqrt{y\left(2y+x\right)}\le\dfrac{1}{\sqrt{3}}.\dfrac{5y+x}{2}\)

\(\Rightarrow P\ge\dfrac{x+y}{\dfrac{1}{2\sqrt{3}}\left(6x+6y\right)}=\dfrac{\sqrt{3}}{3}\)

Dấu = xảy ra khi x=y

23 tháng 5 2021

Bài này áp dụng bunhia :v

Áp dụng bunhia với 2 cặp số `(sqrtx,sqrty),(sqrt{2x+y},sqrt{2y+x})`

`(x+y)(2x+y+2y+x)>=(sqrt{x(2x+y)}+sqrt{y(2y+x)})^{2}`

`<=>3(x+y)^{2}>=(sqrt{x(2x+y)}+sqrt{y(2y+x)})^{2}`

`=>sqrt{x(2x+y)}+sqrt{(2y+x)}<=sqrt3(x+y)`

`=>P>=1/sqrt3`

Dấu "="`<=>x=y`

1. Giải phương trình:1/ \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)2/ \(\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}=8\)3/ \(y^2-2y+3=\dfrac{6}{x^2+2x+4}\)4/ \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)5/ \(x^2-\left(m+1\right)x+2m-6=0\)6/ \(615+x^2=2^y\)2.a, Cho các số dương a,b thoả mãn \(a+b=2ab\).Tính GTLN của biểu thức \(Q=\dfrac{2}{\sqrt{a^2+b^2}}\).b, Cho các số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\).Tính GTNN và GTLN của biểu thức \(P=x+y\).3. Cho hàm...
Đọc tiếp

1. Giải phương trình:

1/ \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)

2/ \(\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}=8\)

3/ \(y^2-2y+3=\dfrac{6}{x^2+2x+4}\)

4/ \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)

5/ \(x^2-\left(m+1\right)x+2m-6=0\)

6/ \(615+x^2=2^y\)

2.

a, Cho các số dương a,b thoả mãn \(a+b=2ab\).

Tính GTLN của biểu thức \(Q=\dfrac{2}{\sqrt{a^2+b^2}}\).

b, Cho các số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\).

Tính GTNN và GTLN của biểu thức \(P=x+y\).

3. Cho hàm số \(y=\left(m+3\right)x+2m-10\) có đồ thị đường thẳng (d), hàm số \(y=\left(m-4\right)x-2m-8\) có đồ thị đường thẳng (d2) (m là tham số, \(m\ne-3\) và \(m\ne4\)). Trên mặt phẳng toạ độ Oxy, (d) cắt trục hoành tại điểm A, (d2) cắt trục hoành tại điểm B, (d) cắt (d2) tại điểm C nằm trên trục tung. Chứng minh hệ thức \(\dfrac{OA}{BC}=\dfrac{OB}{AC}\).

4. Cho 2 đường tròn (O) và (I) cắt nhau tại dây AB, chứng minh rằng \(\Delta OAI=\Delta OBI\).

0