\(\frac{x}{3}=\frac{y}{4};\frac{y}{6}=\frac{z}{8}và3x-2y-z=13\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2016

ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{x}{18}=\frac{y}{24}\) và \(\frac{y}{6}=\frac{z}{8}=\frac{y}{24}=\frac{z}{32}\)

\(\frac{\Rightarrow x}{18}=\frac{y}{24}=\frac{z}{32}\)
\(\frac{3x}{54}=\frac{2y}{48}=\frac{z}{32}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{3x}{54}=\frac{2y}{48}=\frac{z}{32}=\frac{3x-2y-z}{54-48-32}=\frac{13}{-26}=-2\)

\(\Rightarrow\frac{x}{18}=-2\Rightarrow x=-2.18=-36\)

\(\Rightarrow\frac{y}{24}=-2\Rightarrow y=-2.24=-48\)

\(\Rightarrow\frac{z}{32}=-2\Rightarrow z=-2.32=-64\)

3 tháng 10 2018
a, 4x=5y=> x/5=y/4 => x/5=y/4=3x/15=2y/8 => 3x-2y/15-8=35/7=5( theo tính chất dãy tỉ số bằng nhau) => x=25;y=20 b, x/2=y/3=z/5 =>x+y+z/2+3+5=-90/10=-9(theo tính chất dãy tỉ số bằng nhau) =>x=-18;y=-27;z=-45 c, x:y:z=3:5:(-2) => x/3=y/5=z/-2 =5x/15=y/5=3z/-6 =>5x-y+3z/15-5+(-6)(theo tính chất dãy tỉ số bằng nhau) =124/4=31 =>x=93;y=155;z=-62 Mik sẽ bổ sung sau vì máy mik sắp hết pin
2 tháng 11 2019

Tính chất của dãy tỉ số bằng nhauTính chất của dãy tỉ số bằng nhauMấy bài còn lại tương tự nhé cậu

31 tháng 8 2015

d) \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)

=> \(\frac{y+z-x}{4+6-2}=\frac{8}{8}=1\)

=> \(\frac{x}{2}=1\Rightarrow x=2\)

=> \(\frac{y}{4}=1\Rightarrow y=4\)

=> \(\frac{z}{6}=1\Rightarrow z=6\)

31 tháng 8 2015

b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow x=y.\frac{3}{4}\)

\(\frac{y}{6}=\frac{z}{8}\Rightarrow z=y.\frac{8}{6}=y.\frac{4}{3}\)

=> \(3x-2y-z=y.3.\frac{3}{4}-2y-y.\frac{4}{3}=13\)

=> \(y.\frac{9}{4}-2y-y.\frac{4}{3}=y.\left(\frac{9}{4}-2-\frac{4}{3}\right)=13\)

=> \(y.\frac{-13}{12}=13\)

\(y=13:\frac{-13}{12}\)

\(y=-12\)

=> \(x=y.\frac{3}{4}=-9\)

=> \(z=y.\frac{4}{3}=-16\)

12 tháng 8 2019

Ta có: \(\frac{x}{3}=\frac{y}{4}\)=> \(\frac{x}{9}=\frac{y}{12}\)

      \(\frac{y}{6}=\frac{z}{8}\) => \(\frac{y}{12}=\frac{z}{16}\)

=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\) => \(\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

   \(\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\)

=> \(\hept{\begin{cases}\frac{x}{9}=-1\\\frac{y}{12}=-1\\\frac{z}{16}=-1\end{cases}}\) => \(\hept{\begin{cases}x=-1.9=-9\\y=-1.12=-12\\z=-1.16=-16\end{cases}}\)

Vậy ...

12 tháng 8 2019

\(\frac{x}{3}=\frac{y}{4}\Leftrightarrow x=\frac{3y}{4}\) ; \(\frac{y}{6}=\frac{z}{8}\Leftrightarrow z=\frac{8y}{6}\Leftrightarrow z=\frac{4y}{3}\)

Ta có: 3x - 2y - z = 13

\(\Leftrightarrow3\times\frac{3y}{4}-2y-\frac{4y}{3}=13\)

\(\Leftrightarrow-\frac{1}{2}y=13\)

\(\Leftrightarrow y=-26\). Từ đây ta dễ dàng tính x, y nhờ các công thức đã lập

Đây là phương pháp quy nhiều ẩn về 1 ẩn

3 tháng 10 2020

a) Ta có : \(\frac{x}{y}=\frac{6}{5}\) => \(\frac{x}{6}=\frac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{6}=\frac{y}{5}=\frac{x+y}{6+5}=\frac{121}{11}=11\)

=> x = 11.6 = 66,y = 11.5 = 55

b) 4x = 5y => \(\frac{x}{5}=\frac{y}{4}\)=> \(\frac{2x}{10}=\frac{5y}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{10}=\frac{5y}{20}=\frac{2x-5y}{10-20}=\frac{40}{-10}=-4\)

=> x = (-4).5 = -20 , y = (-4).4 = -16

c) Đặt \(\frac{x}{3}=\frac{y}{16}=t\Rightarrow\hept{\begin{cases}x=3t\\y=16t\end{cases}}\)

=> xy = 3t.16t = 48t2

=> 48t2 = 192

=> t2 = 4

=> t = \(\pm\)2

Với t = 2 thì x = 3.2 = 6,y = 16.2 = 32

Với t = -2 thì x = -6,y = -32

d) \(\frac{x}{-3}=\frac{y}{7}\)

=> \(\frac{x^2}{9}=\frac{y^2}{49}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{x^2-y^2}{9-49}=\frac{-360}{-40}=9\)

=> x2 = 9.9 = 81 => x = \(\pm\)9

y2 = 9.49 = 441 => y = \(\pm\)21

Câu e,f tương tự

3 tháng 10 2020

làm hộ mik cả câu e,f nx nhé

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)Bài 2: Tìm x, y, z thão mãn:a. \(2x=3y=7z\) và  \(x+y+z-13=0\)b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot...
Đọc tiếp

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:
\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)

Bài 2: Tìm x, y, z thão mãn:

a. \(2x=3y=7z\) và  \(x+y+z-13=0\)

b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)

c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)

d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)

e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot y=15\)

f. \(\frac{x^2-y^2}{3}=\frac{y^2+x^2}{-5}=x^{10}\cdot y^{10}=1024\)

g. \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)

h. \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)

i. \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x\cdot y+y\cdot z+x\cdot z=31\)

k. \(7x=3y:5y=7z\)  và \(x\cdot y+x\cdot z-y\cdot z=4\)

 Bìa 3: Tính 

\(Cho \frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Tính

\(a. A=\frac{5x+3y}{5y-4z}\)

\(b. B=\frac{x+2y-3z}{3y+2z-5x}\)

\(c. C=\frac{2y-3z}{x+y+z}\)

Bài 4: 

\(Cho \frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) với \(a+b+c\ne0\) và \(a=2011\)
Tính b và 3b-4c

0
18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

9 tháng 7 2015

nhiều quá không ai làm đâu

17 tháng 8 2016

\(\Rightarrow\frac{5x}{5.10}=\frac{y}{6}=\frac{2z}{2.21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)

\(\Rightarrow\frac{5x}{50}+\frac{y}{6}-\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

\(\Rightarrow x=2.10=20\)

\(y=2.6=12\)

\(z=2.21=41\)

6 tháng 11 2015

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{2}{3x}=\frac{1}{2y}=\frac{2}{z}=\frac{2+1+2}{3x+2y+z}=\frac{5}{1}=5\)(Vì 3x+2y+z=1)

=>\(\frac{2}{3x}=5=>3x=\frac{2}{5}=>x=\frac{2}{15}\)

=>\(\frac{1}{2y}=5=>2y=\frac{1}{5}=>y=\frac{1}{10}\)

=>\(\frac{2}{z}=5=>z=\frac{2}{5}\)

Vậy \(x=\frac{2}{15}\);\(y=\frac{1}{10};\)\(z=\frac{2}{5}\)