\(\frac{x}{10}=\frac{y}{15},x=\frac{z}{2},x+2y-3z=-24\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{2}=\frac{2y}{30}=\frac{3z}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{2}=\frac{2y}{30}=\frac{3z}{6}\)

2 tháng 3 2017

sorry mình gửi nhầm rồi, vẫn hướng đó bạn áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{2}=\frac{2y}{30}=\frac{3z}{6}=\frac{x+2y-3z}{10+30-6}=\frac{-24}{34}=\frac{-12}{17}\)

rồi bạn suy ra x;y nhé

2 tháng 3 2017

a)\(\frac{4+x}{7+y}=\frac{4}{7}\Leftrightarrow7\left(4+x\right)=4\left(7+y\right)\Leftrightarrow28+7x=28+4y\Leftrightarrow7x=4y\Leftrightarrow\frac{x}{4}=\frac{y}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{55}{11}=5\)

=> x=5.4=20; y=5.7=35

b) \(x=\frac{z}{2}\Rightarrow\frac{x}{10}=\frac{z}{20}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{20}=\frac{2y}{30}=\frac{3z}{60}\)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{20}=\frac{2y}{30}=\frac{3z}{60}=\frac{x+2y-3z}{10+30-60}=\frac{-24}{-20}=\frac{6}{5}\)

=> \(x=\frac{6}{5}.10=12;y=\frac{6}{5}.15=30;z=\frac{6}{5}.20=24\)

9 tháng 2 2017

\(x=\frac{z}{2}\Rightarrow\frac{x}{10}=\frac{z}{20}=\frac{y}{15}\)

\(\Rightarrow\frac{x}{10}=\frac{2y}{30}=\frac{3z}{60}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{x}{10}=\frac{2y}{30}=\frac{3z}{60}=\frac{x+2y-3z}{10+30-60}=\frac{-24}{-20}=\frac{6}{5}\)

\(\Rightarrow\left\{\begin{matrix}x=12\\y=18\\z=24\end{matrix}\right.\)

Vậy...

9 tháng 2 2017

\(x=\frac{z}{2}\) => \(\frac{x}{10}=\frac{\frac{z}{2}}{10}=\frac{z}{20}=\frac{y}{15}=k\) (k thuộc Z) => x= 10k; y= 15k; z= 20k => 2y= 30k; 3z= 60k.

Theo đề ra ta có: x + 2y - 3z = 10k + 30 k - 60k = -20k= -24 => k = \(\frac{6}{5}\).

Thay k =\(\frac{6}{5}\)ta được: x= 12; y= 18; z= 24

2 tháng 11 2019

Tính chất của dãy tỉ số bằng nhauTính chất của dãy tỉ số bằng nhauMấy bài còn lại tương tự nhé cậu

13 tháng 10 2016

a) Ta có: x/2 = y/3 => x/8 = y/12 (1)

y/4 = z/5 => y/12 = z/15 (2)

Từ (1) và (2) => x/8 = y/12 = z/15

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

     x/8 = y/12 = z/15 = x + y - z / 8 + 12 - 15 = 10/5 = 2

x/8 = 2 => x = 2 . 8 = 16

y/12 = 2 => y = 2 . 12 = 24

z/15 = 2 => z = 2 . 15 = 30

Vậy x = 16; y = 24 và z = 30

b) Ta có: x/2 = y/3 => x/10 = y/15 (1)

y : 5 = z : 4 => y/5 = z/4 => y/15 = z/12 (2)

Từ (1) và (2) => x/10 = y/15 = z/12

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

    x/10 = y/15 = z/12 = x - y + z / 10 - 15 + 12 = -49/7 = -7

x/10 = -7 => x = -7 . 10 = -70

y/15 = -7 => y = -7 . 15 = -105

z/12 = -7 => z = -7 . 12 = -84

Vậy x = -70; y = -105 và z = -84

c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

      x/2 = y/3 = z/4 = 2y/6 = 3z/12 = x + 2y - 3z / 2 + 6 - 12 = -20/-4 = 5

x/2 = 5 => x = 5 . 2 = 10

y/3 = 5 => y = 5 . 3 = 15

z/4 = 5 => z = 5 . 4 = 20

Vậy x = 10; y = 15 và z = 20.

17 tháng 12 2016

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

\(\Rightarrow x=2k+1,y=3k+2,z=4k+3\)

Mà x-2y+3z=-10

Hay 2k+1-2(3k+2)+3(4k+3)=-10

2k+1-6k-4+12k+9=-10

(2k-6k+12k)+(1-4+9)=-10

8k+6=-10

8k=-16

k=-2

\(\Rightarrow x=-2\cdot2+1=-3,y=-2\cdot3+2=-4,z=-2\cdot4+3=-5\)

 

3 tháng 10 2017

Áp dụng t/c dãy tỉ số bằng nhau: 

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{2-6+12}\)

\(=\frac{-10-6}{8}=\frac{-16}{8}=-2\)

=>x=(-2).2+1=-3;y=(-2).3+2=-4;z=(-2).4+3=-5

15 tháng 1 2019

Áp dụng tính chất dãy tỉ số bằng nhau,ta có:

\(\frac{x-1}{2}\)=\(\frac{y-2}{3}\)=\(\frac{2y-4}{6}\)=\(\frac{z-3}{4}=\frac{3z-9}{12}\)=\(\frac{\left(x-2y+3z\right)+\left(-1+4-9\right)}{2-6+12}\)=\(\frac{-10+\left(-6\right)}{8}\)=-2

\(\Rightarrow\)\(\hept{\begin{cases}x-1=-4\\y-2=-6\\z-3=-12\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=-3\\y=-4\\z=-9\end{cases}}\)(vì x,y,z là số hữu tỉ)

Vậy x=-3; y=-4; z=-9

Vậy x=-3;y=-4;z=-9

18 tháng 10 2020

a, Thiếu đề 

b, Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{1}=\frac{y}{6}=\frac{z}{3}=\frac{2x-3y+4z}{2-18+12}=-\frac{24}{-4}=6\)

\(x=6;y=36;z=18\)

c, Ta có : \(3x-2y=4z\Leftrightarrow3x-2y-4z=0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{1}=\frac{z}{3}=\frac{3x-2y-4z}{6-2-12}=\frac{0}{-8}=0\)

\(x=y=z=0\)

18 tháng 10 2020

b) Đặt \(x=\frac{y}{6}=\frac{z}{3}=k\Rightarrow\hept{\begin{cases}x=k\\y=6k\\z=3k\end{cases}}\)

Khi đó 2x - 3y + 4z = -24

<=> 2k - 3.6k + 4.3k = -24

=> 2k - 18k + 12k = -24

=> -4k = -24

=> k = 6

=> x = 1 ; y = 36 ; z = 18

c) Đặt \(\frac{x}{2}=y=\frac{z}{3}=k\Rightarrow\hept{\begin{cases}x=2k\\y=k\\z=3k\end{cases}}\)

Khi đó 3x - 2y = 4z

<=> 3.2k - 2k = 4.3k

=> 6k - 4k = 12k

=> 2k = 12k

=> k = 0

=> x = y = z = 0