K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2016

Đặt x/2=y/3=z/2=k
=> x=2k; y=3k; z=2k
x-3y+2z=4
2k-3.3k+2.2k=4
2k-9k+4k=4
-3k=4
k=-4/3
x=2k=-4/3.2=-8/3
y=3k=-4/3.3=-4
z=2k=-4/3.2=-8/3
có j ko hiểu cứ nhắn tin cho mình nha

4 tháng 9 2016

nhưng chỉ có y/7=z/2 mà chứ đâu phải y/3=z/2 đâu

20 tháng 10 2021

câu a) không có k nha! Mik ghi nhầm

16 tháng 5

u là troi

2 tháng 8 2015

b1    \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

        \(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c;\frac{c}{a}=1\Rightarrow c=a\)

        \(\Rightarrow a=b=c\)

b2   \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}=k\)

                           =>  \(k=\frac{1}{2}\)                                       

AH
Akai Haruma
Giáo viên
15 tháng 9

Lời giải:

$3(x-1)=2(y-2); 4(y-2)=3(z-3)$

$\Rightarrow \frac{x-1}{2}=\frac{y-2}{3}; \frac{y-2}{3}=\frac{z-3}{4}$

$\Rightarrow \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$

Áp dụng TCDTSBN:

$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$

$=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}$

$=\frac{2x-2+3y-6-(z-3)}{4+9-4}$

$=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5$

$\Rightarrow x-1=10; y-2=15; z-3=20$

$\Rightarrow x=11; y=17; z=23$

Câu 1 The function mm is defined on the real numbers by m(k) = \dfrac{k+2}{k+8}m(k)= k+8 k+2 ​ . What is the value of 10\times m(2)10×m(2)? Answer: Câu 2 The function ff is defined on the real numbers by f(x)= ax-3f(x)=ax−3. What is the value of a if f(3)=9f(3)=9? Answer: Câu 3 The function ff is defined on the real numbers by f(x)= 2x+a-3f(x)=2x+a−3. What is the value of a if f(-5)=11f(−5)=11? Answer: Câu 4 The function ff is defined on the real numbers by f(x) = 2 +...
Đọc tiếp

Câu 1 The function mm is defined on the real numbers by m(k) = \dfrac{k+2}{k+8}m(k)= k+8 k+2 ​ . What is the value of 10\times m(2)10×m(2)? Answer: Câu 2 The function ff is defined on the real numbers by f(x)= ax-3f(x)=ax−3. What is the value of a if f(3)=9f(3)=9? Answer: Câu 3 The function ff is defined on the real numbers by f(x)= 2x+a-3f(x)=2x+a−3. What is the value of a if f(-5)=11f(−5)=11? Answer: Câu 4 The function ff is defined on the real numbers by f(x) = 2 + x-x^2f(x)=2+x−x 2 . What is the value of f(-3)f(−3)? Answer: Câu 5 Given a real number aa and a function ff is defined on the real numbers by f(x)=-6\times|3x|-4f(x)=−6×∣3x∣−4. Compare: f(a)f(a) f(-a)f(−a) Câu 6 There are ordered pairs (x;y)(x;y) where xx and yy are integers such that \dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8} x 5 ​ + 4 y ​ = 8 1 ​ Câu 7 Given a negative number kk and a function ff is defined on the real numbers by f(x)=\dfrac{6}{13}xf(x)= 13 6 ​ x. Compare: f(k)f(k) f(-k)f(−k) Câu 8 Given a positive number kk and a function ff is defined on the real numbers by f(x)=\dfrac{-3}{4}x+4f(x)= 4 −3 ​ x+4. Compare: f(k)f(k) f(-k)f(−k). Câu 9 A=(1+2+3+\ldots+90) \times(12 \times34-6 \times 68):(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6})=A=(1+2+3+…+90)×(12×34−6×68):( 3 1 ​ + 4 1 ​ + 5 1 ​ + 6 1 ​ )= Câu 10 Given that \dfrac{2x+y+z+t}{x}=\dfrac{x+2y+z+t}{y}=\dfrac{x+y+2z+t}{z}=\dfrac{x+y+z+2t}{t} x 2x+y+z+t ​ = y x+2y+z+t ​ = z x+y+2z+t ​ = t x+y+z+2t ​ . The negative value of \dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z} z+t x+y ​ + t+x y+z ​ + x+y z+t ​ + y+z t+x ​ is

2
28 tháng 2 2018

nhanh đi nhé

1 tháng 11 2019

KHO QUÁ ĐI