Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta đặt: \(\frac{x}{4}=\frac{y}{3}=\frac{z}{-2}=k\)
\(\Rightarrow x=4k;y=3k;z=-2k\)
\(\Rightarrow xyz=\left(4.3.-2\right).k^3\)
\(\Rightarrow xyz=\left(-24\right).k^3\)
\(\Rightarrow k^3=240:\left(-24\right)=-10\)
\(\Rightarrow\)(đề sai, không ra số tự nhiên)
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
a)x/4=y/3=z/9
nên x/4=3y/9=4z/36
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{z-3y+4z}{4-9+36}=\frac{62}{31}=2\)
Do đó, x/4=2 nên x=4*2=8
y/3=2 nên x=2*3=6
z/9=2 nên z=9*2=18
b)Gọi x/12=y/9=z/5=k nên x=12k; y=9k; z=5k
=>x*y*z=12k*9k*5k=(12*9*5)*k3=540*k3
mà x*y*z=20 nên 540*k3=20
k3=20/540=1/27=(1/3)^3
=>k=1/3
=>x=12*1/3=4
y=9*1/3=3
z=5*1/3=5/3
c)x/5=y/7=z/3 nên x2/25=y2/49=z2/9
Áp dụng tc dãy tỉ số bằng nhau, ta được:
x2/25=y2/49=z2/9=\(\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)
Do đó, x2/25=9 nên x2=9*25=225=152=(-15)2
nên x=15 hoặc x=-15
y2/49=9 nên y2=9*49=441=212=(-21)2
nên y=21 hoặc y=-21
z2/9=9 nên z2=9*9=92 =(-9)2
nên z=9 hoặc z=-9
Theo đề được:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}\) và x.y.z=180
=> \(\left(\frac{x}{\frac{1}{2}}\right)^3=\left(\frac{y}{\frac{1}{3}}\right)^3=\left(\frac{z}{\frac{1}{4}}\right)^3=\frac{x.y.z}{\frac{1}{2}.\frac{1}{3}.\frac{1}{4}}=\frac{180}{\frac{1}{24}}=4320\)
Vậy \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}=\sqrt[3]{4320}\)
=> Không tìm được x,y,z
Chứng minh:
Từ a^2k+b^2k/c^2k+d^2k =a^2k-b^2k/c^2k-d^2k (K THUỘC N)
Ta có thể suy ra a/b = +-c/d