Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{x-5}=-\frac{4}{x+2}\)
\(\Leftrightarrow3\left(x+2\right)=-4\left(x-5\right)\)
\(\Leftrightarrow3x+6=-4x+20\)
\(\Leftrightarrow7x=14\)
\(\Leftrightarrow x=2\)
\(\frac{x}{-2}=-\frac{8}{x}\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow x=\pm4\)
\(-\frac{2}{x}=\frac{y}{3}\)
\(\Leftrightarrow xy=-6\)
\(\Leftrightarrow x;y\inƯ\left(-6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Xét bảng
x | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -1 |
y | -6 | 6 | -3 | 3 | -2 | 2 | -1 | 6 |
Vậy.................
\(\frac{2x-9}{240}=\frac{39}{80}\)
\(\Leftrightarrow2x-9=\frac{240.39}{80}\)
\(\Leftrightarrow2x-9=117\)
\(\Leftrightarrow2x=126\)
\(\Leftrightarrow x=63\)
nè, không làm thôi ằ nhagg. khó thì đừng gửi câu trả lời làm gì cho mệt nha bạn
\(\frac{x-2}{4}=\frac{-9}{2-x}\)
\(\Rightarrow\frac{x-2}{4}=\frac{9}{x-2}\)
\(\Rightarrow\left(x-2\right)^2=36\)
\(\Rightarrow\left(x-2\right)^2=\left(\pm6\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=6\\x-2=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-4\end{cases}}}\)
\(\frac{x}{15}=\frac{3}{y}\)
\(\Rightarrow xy=45\)
\(\Rightarrow x;y\inƯ\left(45\right)=\left\{\pm1;\pm3;\pm5;\pm9;\pm15;\pm45\right\}\)
Xét bảng
x | 1(loại) | -1 | 3(loại) | -3 | 5(loại) | -5 | 45 | -45(loại) | 15 | -15(loại) | 9 | -9(loại) |
y | 45(loại) | -45 | 15(loại) | -15 | 9(loại) | -9 | 1 | -1(loại) | 3 | -3(loại) | 5 | -5(loại) |
Vậy.......................................
d;Áp dụng tích chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{3}=\frac{x+y}{4+3}=\frac{14}{7}=2\)
\(\Rightarrow x=4.2=8\)
\(y=3.2=6\)
a)ta có xy=7*9=7*3*3
vậy x =9;21 , y=7;3
b) xy=-2*5
mà x<0<y
nên x=-2 ,y=5
c)x-y=5 hay x=y+5
\(\frac{y+5+4}{y-5}=\frac{4}{3}\Rightarrow3y+27=4y-20\Rightarrow y=47\Rightarrow x=52\)
Bài 1:
a; \(\dfrac{x}{3}\) = \(\dfrac{4}{y}\)
\(xy\) = 12
12 = 22.3; Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6;12}
Lập bảng ta có:
\(x\) | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
y | -1 | -2 | -3 | -4 | -6 | -12 | 12 | 6 | 4 | 3 | 2 | 1 |
Theo bảng trên ta có các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x\)\(;y\)) =(-12; -1);(-6; -2);(-4; -3);(-2; -6);(-1; 12);(1; 12);(2;6);(3;4);(4;3);(6;2);(12;1)
b; \(\dfrac{x}{y}\) = \(\dfrac{2}{7}\)
\(x\) = \(\dfrac{2}{7}\).y
\(x\) \(\in\)z ⇔ y ⋮ 7
y = 7k;
\(x\) = 2k
Vậy \(\left\{{}\begin{matrix}x=2k\\y=7k;k\in z\end{matrix}\right.\)
a./ \(\frac{x}{5}=\frac{y}{7}=\frac{z}{4}=\frac{x-y+z}{5-7+4}=\frac{-10}{2}=-5\)
\(\Rightarrow x=-25;y=-35;z=-20\)
b./ \(\frac{x}{5}=\frac{y}{-4}=\frac{z}{-7}=\frac{x+y-z}{5-4-\left(-7\right)}=\frac{-40}{6}=-5\)
\(\Rightarrow x=-25;y=20;z=35\)
\(a.\frac{2}{x}=\frac{x}{8}\Rightarrow x^2=2.8=16\Rightarrow x^2=4^2=\left(-4\right)^2\Rightarrow x\in\left\{-4;4\right\}\)
\(b.\frac{-3}{x}=\frac{y}{2}\Rightarrow x.y=-3.2=-6\Rightarrow\text{Ta có bảng sau:}\)
Mà theo đề: x < 0 < y
Vậy các cặp (x; y) thỏa là: (-6; 1); (-3; 2); (-2; 3); (-1; 6).
\(c.\frac{-4}{8}=-\frac{1}{2}=\frac{5}{-10}=\frac{x}{-10}=-\frac{7}{14}=\frac{-7}{y}=\frac{12}{-24}=\frac{z}{-24}\)
=> x = 5; y = 14; z = 12.