Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo tại đây:
Câu hỏi của Hacker Chuyên Nghiệp - Toán lớp 7 - Học toán với OnlineMath
a, \(\frac{xy}{2y+4x}=\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{x^2+y^2+z^2}{2^2+4^2+6^2}\) (2)
Xét \(x=0\Rightarrow y=z=0\Rightarrow2y+4z=0\) (vô lí)
\(\Rightarrow x\ne0;y\ne0;z\ne0\)
Khi đó từ (2) \(\Rightarrow\frac{2y+4x}{xy}=\frac{4z+6y}{yz}=\frac{6x+2z}{zx}=\frac{2^2+4^2+6^2}{x^2+y^2+z^2}\)
\(\Rightarrow\frac{2}{x}+\frac{4}{y}=\frac{4}{y}+\frac{6}{z}=\frac{6}{z}+\frac{2}{x}=\frac{2^2+4^2+6^2}{x^2+y^2+z^2}\)
\(\Rightarrow\frac{2}{x}=\frac{4}{y}=\frac{6}{z}\) và \(\frac{2^2+4^2+6^2}{x^2+y^2+z^2}=2.\frac{2}{x}\)
Đặt \(\frac{2}{x}=\frac{4}{y}=\frac{6}{z}=\frac{1}{k}\left(k\ne0\right)\)thì \(\frac{2^2+4^2+6^2}{x^2+y^2+z^2}=\frac{2}{k}\)
\(\Rightarrow x=2k;y=4k;z=6k\)và \(x^2+y^2+z^2=28k\) (3)
\(thay\) \(x=2k;y=4k;z=6k\)vào (3) ta được :
\(\left(2k\right)^2+\left(4k\right)^2+\left(6k\right)^2=28k\)
\(56k^2-28k=0\)
\(56k.\left(2k-1\right)=0\)
\(\Rightarrow k=0\)(loại)
Hoặc \(k=\frac{1}{2}\)( thỏa mãn)
Với \(k=\frac{1}{2}\)thì tìm được \(x=1;y=2;z=3\)
Vậy \(x=1;y=2;z=3\)
Ta có :
\(|x-y|+|y-z|+|z-x|=2019\)
\(\Rightarrow|x-y|+\left(x-y\right)+|y-z|+\left(y-z\right)+|z-x|+\left(z-x\right)=2019\)
Nhận xét :
\(|a|+a=0\)với \(a\le0\)
\(|a|+a=2a\)với \(a\ge0\)
\(\Rightarrow|a|+a\)luôn chẵn với \(\forall a\)
\(\Rightarrow|x-y|+\left(x-y\right)+|y-z|+\left(y-z\right)+|z-x|+\left(z-x\right)\)luôn chẵn với \(\forall x,y,z\)
mà \(2019\)lẻ
\(\Rightarrow\left(đpcm\right)\)
\(\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z-1\right|=0\) \(0\)
<=> \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{3}{4}=0\\z-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{3}{4}\\z=1\end{cases}}\)
\(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\\frac{3}{4}-\frac{2}{5}+z=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\z=\frac{-7}{20}\end{cases}}\)
\(\left|x-\frac{2}{3}\right|+\left|x+y+\frac{3}{4}\right|+\left|y-z-\frac{5}{6}\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{2}{3}=0\\x+y+\frac{3}{4}=0\\y-z-\frac{5}{6}=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{-17}{12}\\z=\frac{-9}{4}\end{cases}}\)
\(\left|x-\frac{1}{2}\right|+\left|xy-\frac{3}{4}\right|+\left|2x-3y-z\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\xy-\frac{3}{4}=0\\2x-3y-z=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}:\frac{1}{2}=\frac{3}{2}\\z=\frac{-7}{2}\end{cases}}\)
các câu còn lại tương tự
b. Ta có : xy.yz.zx=3/5.4/5.3/4
=) x^2.y^2.z^2=9/25
(=) (x.y.z)^2 =9/25
mà (x.y.z)^2 =(3/5)^2
(=) x.y.z =3/5
*Ta có xy=3/5
=) xyz =3/5
=)3/5.z =3/5
=) z =3/5:3/5
(=) z =1
*Ta có: yz=4/5
=) xyz =3/5
=) x.4/5=3/5
=) x =3/5:4/5
=) x = 3/4
*Ta có: zx=3/4
=) xyz =3/5
(=) xzy =3/5
=)3/4.y=3/5
=) y =3/5:3/4
=) y =4/5
Vậy x=3/4, y=4/5, z=1
Ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) ( Do đó mà \(x;y;z\)cùng dấu )
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{xy}{6}=\frac{yz}{12}=\frac{xz}{8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{xy}{6}=\frac{yz}{12}=\frac{xz}{8}=\frac{xy+yz+xz}{6+12+8}=\frac{104}{26}=4\)
\(\frac{x^2}{4}=4\Rightarrow x\in\left\{-4;4\right\}\)
\(\frac{y^2}{9}=4\Rightarrow y\in\left\{-6;6\right\}\)
\(\frac{z^2}{16}=4\Rightarrow x\in\left\{-8;8\right\}\)
Mà x ; y ; z cùng dấu nên \(\left(x;y;z\right)\in\left\{\left(-4;-6;-8\right);\left(4;6;8\right)\right\}\)
Ta có :
1/xy + 1/yz +1/zx=1
=>1/xy+1/yz=1-1/zx
=>z/xyz+x/xyz=xz-1/zx=>x+z/xyz=(xz-1)*y/xyz=>x+z=(xz-1)*y=>x+z=xyz-1=x+y+z-1=>y=1
Lần lượt bạn làm như vậy từ đề bài ta suy ra tiếp theo làm 1/xy+1/zx=1-1/yz r làm tương tự như trên sẽ ra đáp án cách mình không hay lắm nhA! Mk sẽ cố gắng làm cách hay hơn nx nhưng cần thời gian mong bạn thông cảm