Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng công thức hằng đẳng thức:
\(x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\) ta có:
\(x^3+y^3+3xyz=z^3\)
\(\Leftrightarrow x^3+y^3+(-z)^3-3xy(-z)=0\)
\(\Leftrightarrow (x+y-z)(x^2+y^2+z^2-xy+xz+yz)=0\)
TH1: \(x+y-z=0\)
\(\Leftrightarrow z=x+y\)
Thay vào: \(z^3=2(2x+2y)^2=8(x+y)^2\)
\(\Leftrightarrow (x+y)^3=8(x+y)^2\)
\(\Leftrightarrow (x+y)^2(x+y-8)=0\)
Do x,y nguyên dương nên \((x+y)^2\neq 0\Rightarrow x+y-8=0\Rightarrow x+y=8\Rightarrow z=8\)
\(x+y=8\Rightarrow (x,y)=(1,7); (2;6); (3;5); (4;4)\) và các hoán vị tương ứng
TH2: \(x^2+y^2+z^2-xy+yz+xz=0\)
\(\Leftrightarrow \frac{(x-y)^2+(y+z)^2+(z+x)^2}{2}=0\)
Vì \((x-y)^2; (y+z)^2; (z+x)^2\geq 0\Rightarrow (x-y)^2+(y+z)^2+(x+z)^2\geq 0\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x-y=0\\ y+z=0\\ z+x=0\end{matrix}\right.\) (vô lý do x,y,z nguyên dương)
Vậy \((x,y,z)=(1;7;8); (2;6;8); (3;5;8); (4;4;8); (5;3;8); (6;2;8); (7;1;8)\)
\(x^2+y^2+z^2=xy+xz+yz\Leftrightarrow2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=0\\x-z=0\\y-z=0\end{matrix}\right.\) \(\Rightarrow x=y=z\)
\(x^{2014}+y^{2014}+z^{2014}=3\Rightarrow3x^{2014}=3\Rightarrow x^{2014}=1\)
\(\Rightarrow x=y=z=\pm1\)
- Nếu \(x=y=z=1\Rightarrow L=1+1+1=3\)
- Nếu \(x=y=z=-1\Rightarrow L=-1+1-1=-1\)
\(x^3+y^3=z\left(3xy-z^2\right)\)
\(\Rightarrow x^3+y^3=3xyz-z^3\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)(1)
Từ (1) bạn biến đổi được: \(\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\) ( x+y+z=0 ko thỏa mãn đề bài.)
Mà \(x+y+z=3\Rightarrow x=y=z=1\)
Khi đó: \(A=673\left(1^{2020}+1^{2020}+1^{2020}\right)+1\)
\(=673.3+1=2020\)
Vậy \(A=2020.\)Chúc bạn học tốt.
Lời giải:
Áp dụng BĐT Cô-si cho các số không âm ta có:
\(x^4+x^4+y^4+z^4\geq4\sqrt[4]{x^8y^4z^4}=4|x^2yz|\ge 4x^2yz\)
\(x^4+y^4+y^4+z^4\geq 4xy^2z\)
\(x^4+y^4+z^4+z^4\geq 4xyz^2\)
Cộng theo vế và rút gọn:
\(\Rightarrow x^4+y^4+z^4\geq xyz(x+y+z)=3xyz\)
Dấu "=" xảy ra khi \(x=y=z\). Kết hợp với $x+y+z=3$ suy ra $x=y=z=1$
Do đó:
\(M=x^{2018}+y^{2019}+z^{2020}=1+1+1=3\)
\(x+y+z=6\)
\(\Leftrightarrow\)\(\left(x+y+z\right)^2=36\)
\(\Leftrightarrow\)\(x^2+y^2+z^2+2xy+2yz+2zx=36\)
\(\Leftrightarrow\)\(2xy+2yz+2zx=24\)
\(\Leftrightarrow\)\(2xy+2yz+2zx=2x^2+2y^2+2z^2\)
\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)
\(\Leftrightarrow\)\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow}x=y=z}\)
Mà \(x+y+z=6\)\(\Rightarrow\)\(x=y=z=\frac{6}{3}=2\)
Vậy \(x=y=z=2\)
Chúc bạn học tốt ~
ĐK: x + y + z = 6; \(x^2+y^2+z^2=12\)
Áp dụng BĐT Bunhiacopxki cho hai bộ số (1;1;1) và (x;y;z).Ta có:
\(\left(1+1+1\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
Thay \(x+y+z=6\) và ta có:
\(3\left(x^2+y^2+z^2\right)\ge36\Leftrightarrow x^2+y^2+z^2\ge12\) (tmđk)
Dấu "=" xảy ra khi \(x=y=z=\frac{6}{3}=2\) (*)
Từ (*) suy ra x=y=z=2
Áp dụng bđt bunhia cho 2 bộ số (1 ; 1 ; 1) và (x ; y ; z) ta có:
(1 + 1 + 1).(x² + y² + z²) ≥ (x + y + z)²
<=> 3(x² + y² + z²) ≥ 36 < do x+y+z=6 theo đề bài >
<=> x² + y² + z² ≥ 12 => đpcm
Dấu "=" xảy ra <=> x = y = z = 2
-----------------------------
2) xy/z + yz/x + zx/y ≥ x + y + z với x,y,z là các số thực dương
Áp dụng bđt cô si cho 2 số thực dương ta có:
xy/z + yz/x ≥ 2y
yz/x + zx/y ≥ 2z
xy/z + zx/y ≥ 2x
Cộng vế với vế 3bđt trên ta được :
xy/z + yz/x + zx/y ≥ x + y + z => đpcm
Dấu "=" xảy ra <=> x = y = z
-----------------------------------
3) x² + 5y² - 4xy + 2x - 6y +3 > 0 với mọi x , y
<=> (x² - 4xy + 4y²) + (2x - 4y) + 1 + (y² -2y + 1) + 1 > 0
<=> [(x - 2y)² + 2(x - 2y) + 1] + (y - 1)² + 1 > 0
<=> (x - 2y + 1)² + (y - 1)² + 1 > 0 => luôn đúng với mọi x,y
=> đpcm