K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2017

Ta có : \(\frac{x+1}{5}=\frac{2x-7}{3}\)

\(\Rightarrow3\left(x+1\right)=5\left(2x-7\right)\)

\(\Leftrightarrow3x+3=10x-35\)

\(\Leftrightarrow3x-10x=-35-3\)

\(\Leftrightarrow-7x=-38\)

\(\Rightarrow x=\frac{38}{7}\)

19 tháng 6 2017

Ta có : \(\frac{x}{4}=\frac{9}{x}\)

\(\Rightarrow x^2=9.4\)

=> x= 36

=> x = +4;-4 

Ta có : \(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=x+y+z\) (1)

Áp dụng tính chất dãy tỉ số bằng nhau cho 3 đăng thức đầu tiên ta được :

\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+1+x+z+1+x+y-2}=\frac{x+y+z}{2.\left(x+y+x\right)}=\frac{1}{2}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{1}{2}=x+y+z\)\(\left\{{}\begin{matrix}2x=y+z+1\\2y=z+x+1\\2z=x+y-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-1=\frac{1}{2}\\3y-1=\frac{1}{2}\\3z+2=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{matrix}\right.\)

Vậy : ....

18 tháng 12 2017

Sửa đề: \(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z\)

Lời giải:

Xét: \(x+y+z=0\Leftrightarrow\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z=0\Leftrightarrow x=y=z=0\)

Xét: \(x+y+z\ne0\) áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{y+z+x+z+x+y+1+1-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{y+z+1}=\dfrac{1}{2}\\\dfrac{y}{x+z+1}=\dfrac{1}{2}\\\dfrac{z}{x+y-2}=\dfrac{1}{2}\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y+z+1=2x\\x+z+1=2y\\x+y-2=2z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\) (1)

Từ \(x+y+z=\dfrac{1}{2}\) ta có: \(\left\{{}\begin{matrix}y+z=\dfrac{1}{2}-x\\x+y=\dfrac{1}{2}-z\\x+z=\dfrac{1}{2}-y\end{matrix}\right.\)

Thay vào pt(1) ta có:

\(\dfrac{x}{\dfrac{1}{2}-x+1}=\dfrac{y}{\dfrac{1}{2}-y+1}=\dfrac{z}{\dfrac{1}{2}-z-2}=\dfrac{1}{2}\)

Dễ dàng tìm được \(x;y;z\)

17 tháng 12 2017

Đây nek:

Câu hỏi của Công chúa vui vẻ - Toán lớp 7 | Học trực tuyến