Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tc dãy tỉ số bằng nhau ta có :
x+y+z = x/y+z-2 = y/z+x-3 = z/x+y+5 = x+y+z/y+z-2+z+x-3+x+y+5 = 1/2
=> x+y+z = 1/2 = x = 1/2.(y+z-2) ; y = 1/2.(z+x-3) ; z = 1/2.(x+y+5)
Đến đó bạn tự giải nha
Tk mk nha
a) x:y:z:t=2:3:4:5
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\)
Áp dụng tính ... , ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{-42}{14}=-3\)
\(\Rightarrow x=-6;y=-9;z=-12;t=-15\)
b) c ) tương tự
Từ đẳng thức : (x+y):(5-z):(y+z):(9+y)=3:1:2:5
=> \(\frac{x+y}{3}=\frac{5-z}{1}=\frac{y+z}{2}=\frac{9+y}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+y}{3}=\frac{5-z}{1}=\frac{y+z}{2}=\frac{9+y}{5}=\frac{5-z+y+z-9-y}{1+2-5}=\frac{-4}{-2}=2\)
=> x + y = 6 (1) ; z = 3 (2) ; y + z = 4 (3) và y = 1(4)
=> x = 6 - 1 = 5
Vậy x = 5 ; y = 1 ; z = 3
\(\dfrac{x}{y}=\dfrac{2}{5}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}\)
\(\dfrac{y}{z}=\dfrac{5}{3}\rightarrow\dfrac{y}{5}=\dfrac{z}{3}\)
Ta có: \(\dfrac{x}{2}=\dfrac{y}{5},\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{2x}{4}=\dfrac{y}{5}=\dfrac{3z}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(2x)/4=y/5=(3z)/9=(2x-y+3z)/(4-5+9)=16/8=2`
`-> x/2=y/5=z/3=2`
`-> x=2*2=4, y=2*5=10, z=2*3=6`
`x/5=y/3 -> x/25=y/15`
`y/5=z/4 -> y/15=z/12`
`x/25=y/15, y/15=z/12`
`-> x/25=y/15=z/12`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/25=y/15=z/12=(x-y+z)/(25-15+12)=22/22=1`
`-> x/25=y/15=z/12=1`
`-> x=25, y=15, z=12`
a: x/y=2/5
=>x/2=y/5
y/z=5/3
=>y/5=z/3
=>x/2=y/5=z/3
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{2x-y+3z}{2\cdot2-5+3\cdot3}=\dfrac{16}{8}=2\)
=>x=4; y=10; z=6
b: x/5=y/3
=>x/25=y/15
y/5=z/4
=>y/15=z/12
=>x/25=y/15=z/12
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{25}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{25-15+12}=1\)
=>x=25; y=15; z=12
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
Giải : Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y+z-5}=\frac{y}{x+z+3}=\frac{z}{x+y+2}=\frac{1}{2\left(x+y+z\right)}\)
\(=\frac{x+y+z}{\left(y+z-5\right)+\left(x+z+3\right)+\left(x+y+3\right)}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\) (vì x + y + z \(\ne\)0)
==> \(\frac{1}{2\left(x+y+z\right)}=\frac{1}{2}\) => \(x+y+z=1\)
==> \(\frac{x}{y+z-5}=\frac{1}{2}\) => \(y+z-5=2x\) => \(x+y+z-5=3x\) => 1 - 5 = 3x => -4 = 3x => \(x=-\frac{4}{3}\)
==> \(\frac{y}{x+z+3}=\frac{1}{2}\) => \(x+z+3=2y\) => \(x+y+z+3=3y\) => \(1+3=3y\) => \(4=3y\)=> \(y=\frac{4}{3}\)
==> \(\frac{z}{x+y+2}=\frac{1}{2}\) => 2z = x + y + 2 => 2z = -4/3 + 4/3 + 2 => 2z = 2 => z = 1
Vậy x,y,z thõa mãn là : \(-\frac{4}{3};\frac{4}{3};1\)