Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)
* \(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)
* \(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)
c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)
*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)
*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)
a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
Suy ra : x = 2.6 = 12
y = 2.4 = 8
z = 2.5 = 10
b,c,d tương tự
e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
Tới đây bạn làm tương tự a,b,c,d
f tương tự.
g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Bạn áp dụng dãy tỉ số bằng nhau là ra.
h/ Áp dụng dãy tỉ số bằng nhau :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)
Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.
a) Ta có: x/10=y/6=z/24 và 5x+y—2x=28
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x/10=y/6=z/24=5x/50+y/6–2x/48= 5x+y—2x/50+6–48=28/ 8
Ta được: x= 10.28/8=35
y= 6.28/8=21
z=24.28/8=84
a) \(\frac{x}{10}\)= \(\frac{y}{6}\)= \(\frac{z}{21}\) và 5x + y - 2z =28
\(\Rightarrow\)\(\frac{5x}{50}\)= \(\frac{y}{6}\)= \(\frac{2z}{42}\) và 5x + y - 2z=28
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}\)= \(\frac{y}{6}\)= \(\frac{2z}{42}\)= \(\frac{5x+y-2z}{50+6-42}\)= \(\frac{28}{14}\)=2
Suy ra: \(\frac{x}{10}\)= \(2\)\(\Rightarrow\)x=20
\(\frac{y}{6}\)= 2\(\Rightarrow\)y=12
\(\frac{z}{21}\)= 2\(\Rightarrow\)z=42
Vậy...
Hai câu b,c làm tương tự nhé
d) \(\frac{3}{x}\)= \(\frac{2}{y}\); \(\frac{7}{y}\)= \(\frac{5}{z}\) và x-y+z=32
\(\frac{y}{3}\)= \(\frac{x}{2}\); \(\frac{z}{7}\)= \(\frac{y}{5}\) và x-y+z=32
\(\frac{y}{15}\)= \(\frac{x}{10}\); \(\frac{z}{21}\)= \(\frac{y}{15}\) và x-y+z=32
\(\frac{y}{15}\)= \(\frac{x}{10}\)= \(\frac{z}{21}\) và x-y+z=32
........
Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)
=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
=>x=27;z=36;z=60
Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)
+)k=-2 => x=-4;y=-5
+)k=2 => x=4;y=5
Vậy x=-4;y=-5 hoặc x=4;y=5
\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)
Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}\times\frac{1}{5}=\frac{y}{4}\times\frac{1}{5}=\frac{x}{15}=\frac{y}{20}\left(1\right)\)
Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}=\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)
\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)
Lại có : \(2x+3y-z=186\)
Thay vào ta có :
\(2.15k+3.20k-28k=186\)
\(30k+60k-28k=186\)
\(62k=186\)
\(k=3\)
Thay vào ta được :
\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=20.3=60\\z=28.3=84\end{cases}}\)
Vậy .....
a)Có: \(\frac{x}{y}=\frac{9}{11}\Leftrightarrow\frac{x}{9}=\frac{y}{11}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{9}=\frac{y}{11}=\frac{x+y}{9+11}=\frac{40}{20}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.9=18\\y=2.11=22\end{matrix}\right.\)
Vậy...
b)Có: \(x:3=y:5\Leftrightarrow\frac{x}{3}=\frac{y}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{y-x}{5-3}=-\frac{4}{2}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}x=-2.3=-6\\y=-2.5=-10\end{matrix}\right.\)
Vậy...
d)Có: \(\frac{x}{y}=\frac{2}{5}\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)
Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)
Thay \(x=2k;y=5k\) vào x . y =160, ta có:
\(2k.5k=160\\ \Rightarrow10.k^2=160\\ \Leftrightarrow k^2=16\\ \Rightarrow k^2=\left(\pm4\right)^2\\ \Rightarrow k\in\left\{4;-4\right\}\)
+Khi \(k=4\Rightarrow\left\{{}\begin{matrix}x=4.2=8\\y=4.5=20\end{matrix}\right.\)
+Khi \(k=-4\Rightarrow\left\{{}\begin{matrix}x=-4.2=-8\\y=-4.5=-20\end{matrix}\right.\)
Mơn No Choice Teen