Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x;y;z biết
a) \(5x=8y=3z\text{ và }x-2y+z=34\)
Giải
Từ \(5x=8y=3z\)
\(\Rightarrow\hept{\begin{cases}5x=8y\\8y=3z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{5}\\\frac{y}{3}=\frac{z}{8}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{24}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{40}\end{cases}\Rightarrow}\frac{x}{24}=\frac{y}{15}=\frac{z}{40}\Rightarrow\frac{x}{24}=\frac{2y}{30}=\frac{z}{40}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{24}=\frac{y}{15}=\frac{z}{40}=\frac{x}{24}=\frac{2y}{30}=\frac{z}{40}=\frac{x-2y+z}{24-30+40}=\frac{34}{34}=1\)
\(\Rightarrow x=24.1=24;\)
\(y=15.1=15;\)
\(z=40.1=40\)
Vậy x = 24; y = 15 ; z = 40
b) \(15x=10y=6z\text{ và }xyz=-1920\left(1\right)\)
Giải
Từ \(15x=10y=6z\)
\(\Rightarrow\hept{\begin{cases}15x=10y\\10y=6z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{6}=\frac{z}{10}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{20}=\frac{y}{30}\\\frac{y}{30}=\frac{z}{50}\end{cases}}\Rightarrow\frac{x}{20}=\frac{y}{30}=\frac{z}{50}}\)
Đặt \(\frac{x}{20}=\frac{y}{30}=\frac{z}{50}=k\)
\(\Rightarrow x=20k;y=30k;z=50k\left(2\right)\)
Thay (2) vào (1) ta có :
\(\)\(20k.30k.50k=-1920\)
\(\Rightarrow k^3.30000=-1920\)
\(\Rightarrow k^3=-\frac{1920}{30000}\)
\(\Rightarrow k^3=-\frac{64}{1000}\)
\(\Rightarrow k^3=-\frac{4^3}{10^3}\)
\(\Rightarrow k^3=\left(-\frac{4}{10}\right)^3\)
\(\Rightarrow k=-\frac{4}{10}\)
Khi đó : \(x=-\frac{4}{10}.20=-8;\)
\(y=-\frac{4}{10}.30=-12;\)
\(z=-\frac{4}{10}.5=-20\)
Vậy x = - 8 ; y = - 12 ; z = - 20
c) \(x^3 +y^3+z^3=792\left(1\right)\text{ và }\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Giải
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
\(\Rightarrow x=2k;y=3k;z=4k\left(2\right)\)
Thay (2) vào (1) ta có :
\(\left(2k\right)^3+\left(3k\right)^3+\left(4k\right)^3=792\)
\(\Rightarrow k^3.2^3+k^3.3^3+k^3.4^3=792\)
\(\Rightarrow k^3.8+k^3.27+k^3.64=792\)
\(\Rightarrow k^3.\left(8+27+64\right)=792\)
\(\Rightarrow k^3.99=792\)
\(\Rightarrow k^3=8\)
\(\Rightarrow k^3=2^3\)
\(\Rightarrow k=2\)
Khi đó \(x=2.2=4;\)
\(y=3.2=6;\)
\(z=4.2=8\)
Vậy x = 4 ; y = 6 ; z = 8
a) Thiếu đề
b) Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) => \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x+3y+2z}{4+6+6}=\frac{14}{16}=\frac{7}{8}\)
=> \(\hept{\begin{cases}\frac{x}{1}=\frac{7}{8}\\\frac{y}{2}=\frac{7}{8}\\\frac{z}{3}=\frac{7}{8}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{7}{8}.1=\frac{7}{8}\\y=\frac{7}{8}.2=\frac{7}{4}\\z=\frac{7}{8}.3=\frac{21}{8}\end{cases}}\)
Vậy ...
Sửa lại xíu :
\(a)\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x-2y+3z=14\)
\(b)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và \(4x+3y+2z=36\)
Ta có: \(10x=8y=3z\)=>\(\frac{10x}{120}=\frac{8y}{120}=\frac{3z}{120}\)=>\(\frac{x}{12}=\frac{y}{15}=\frac{z}{40}\)
Áp dụng tính chất của dãu tỉ số bằng nhau ta có:
\(\frac{x}{12}=\frac{y}{15}=\frac{z}{40}=\frac{x+y+z}{12+15+40}=\frac{134}{67}=2\)
=>\(\frac{x}{12}=2\)=>\(x=2\cdot12=24\)
\(\frac{y}{15}=2\)=>\(y=2\cdot15=30\)
\(\frac{z}{40}=2\)=>\(z=2\cdot40=80\)
Vậy \(x=24;y=30;z=80\)
TA CÓ : \(10x=8y\)\(\Rightarrow x=\frac{8y}{10}\)(*)
\(8y=3z\) \(\Rightarrow z=\frac{8y}{3}\) (**)
Thay (*) và (**) vào biểu thức x + y + z = 134 ; ta được : \(\frac{8y}{10}+y+\frac{8y}{3}=134\)
\(\Leftrightarrow\)\(24y+30y+80y=134.30\)
\(\Leftrightarrow\)\(134y=4020\)
\(\Leftrightarrow\)\(y=\frac{4020}{134}=30\)
Với \(y=30\)\(\Rightarrow x=\frac{8.30}{10}=24\); \(\Rightarrow z=\frac{8.30}{3}=80\)
Vậy \(x=24\); \(y=30\)và \(z=80\)
Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)
\(\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{y}{6}=\frac{x}{9}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{2y}{12}=\frac{3z}{27}\)
Áp dụng t/c dãy tỉ số bằng nhau ,ta được:
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}=\frac{x}{4}=\frac{2y}{12}=\frac{3z}{27}=\frac{x-2y+3z}{4-12+27}=1\)
Do đó: x=4
y=6
z=9
Vậy......
b) Vì \(\frac{x}{1}=\frac{y}{4}\Rightarrow\frac{x}{3}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}=\frac{4x+y-z}{12+12-16}=\frac{16}{8}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.3=6\\y=2.12=24\\z=2.16=32\end{cases}}\)
Vậy
\(\frac{3x-2y}{37}=\frac{5y-3z}{15}=\frac{2z-5x}{2}=\)
\(\frac{3xz-2yz}{37z}=\frac{5yx-3zx}{15x}=\frac{2zy-5xy}{2y}=\frac{3xz-2yz+5yx-3zx+2zy-5xy}{37z+15x+2y}=0\)(t/c dãy tỉ số bằng nhau)
\(\frac{3x-2y}{37}=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)
\(\frac{5y-3z}{15}=0\Rightarrow5y=3z\Rightarrow\frac{z}{5}=\frac{y}{3}\left(2\right)\)
\(\frac{2z-5x}{2}=0\Rightarrow2z=5x\Rightarrow\frac{x}{2}=\frac{z}{5}\left(3\right)\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{10x}{20}=\frac{3y}{9}=\frac{2z}{10}=\frac{10x-3y-2z}{20-9-10}=\frac{-4}{1}=-4\)
\(x=-8,y=-12,z=-20\)
1. Áp dụng tc dãy TSBN, ta có:
\(\dfrac{x}{6}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{x+y-z}{6+5-3}=\dfrac{54}{8}=\dfrac{27}{4}\)
+\(\dfrac{x}{6}=\dfrac{27}{4}\Rightarrow x=\dfrac{27.6}{4}=\dfrac{81}{2}\)
+\(\dfrac{y}{5}=\dfrac{27}{4}\Rightarrow y=\dfrac{27.5}{4}=\dfrac{135}{4}\)
+\(\dfrac{z}{3}=\dfrac{27}{4}\Rightarrow z=\dfrac{27.3}{4}=\dfrac{81}{4}\)
Vậy \(x=\dfrac{81}{2};y=\dfrac{135}{4};z=\dfrac{81}{4}\)
2,Áp dụng tc dãy TSBN, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{c}{4}=\dfrac{x+2y-3c}{2+2.3+3.4}=\dfrac{-20}{20}=-1\)
+\(\dfrac{x}{2}=-1\Rightarrow x=-1.2=-2\)
+\(\dfrac{y}{3}=-1\Rightarrow y=-1.3=-3\)
+\(\dfrac{c}{4}=-1\Rightarrow c=-1.4=-4\)
Vậy \(x=-2;y=-3;c=-4\)
Áp dụng tính chất dảy tỷ số bằng nhau ta có :
\(5x=8y=3z=\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{3}}=\frac{2y}{\frac{1}{4}}=\frac{x-2y+z}{\frac{1}{5}-\frac{1}{4}+\frac{1}{3}}=\frac{34}{\frac{17}{60}}=120\)
Nên : 5x = 120 => x = 24
8y = 120 => y = 15
3z = 120 => z = 40
Vậy .......................................
Ta có:
\(5x=8y=3z\Leftrightarrow\frac{x}{8}=\frac{y}{5};\frac{y}{3}=\frac{z}{8}\Leftrightarrow\frac{x}{24}=\frac{y}{15}=\frac{z}{40}\) và \(x-2y+z=34\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{24}=\frac{y}{15}=\frac{z}{40}=\frac{x-2y+z}{24-2.15+40}=\frac{34}{34}=1\)
\(\hept{\begin{cases}\frac{x}{24}=1\Rightarrow x=1.24=24\\\frac{y}{15}=1\Rightarrow y=1.15=15\\\frac{z}{40}=1\Rightarrow z=1.40=40\end{cases}}\)
Vậy \(x=24;y=15;z=40\)