K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2016

minh chiu nha

tk nhé@@@@@@@@@@@@@@@@@@@@@@@

hihi

bye

13 tháng 11 2018

tự làm đi bạn

13 tháng 11 2018

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2.\left(y-2\right)}{6}=\frac{3.\left(z-3\right)}{12}\)

áp dụng t.c dãy tỉ số bằng nhau ta có:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{4-6+12}=1\)

\(\frac{x-1}{2}=1\Rightarrow x-1=2\Rightarrow x=3\)

\(\frac{y-2}{3}=1\Rightarrow y-2=3\Rightarrow y=5\)

\(\frac{z-3}{4}=1\Rightarrow z-3=4\Rightarrow z=7\)

Vậy x=3,y=5,z=7

Bài 1: 

Ta có:

\(y-x=25\Rightarrow y=25+x\)

Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)

\(7x=100+4x\)

\(\Rightarrow7x-4x=100\)

\(3x=100\)

\(x=\frac{100}{3}\)

2 tháng 11 2023

bài 1 :

Ta có: 7x=4y ⇔ x/4=y/7

áp dụng tính chất dãy tỉ số bằng nhau ta có 

x/4=y/7=(y-x)/(7-4)=100/3

⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3

bài 2 

ta có x/5 = y/6 ⇔ x/20=y/24

         y/8 = z/7 ⇔ y/24=z/21

⇒x/20=y/24=z/21

ADTCDTSBN(bài 1 có)

x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16

⇒x= 20 x 23/16 = 115/4

   y= 24x 23/16=138/2

   z=21x23/16=483/16

 

14 tháng 6 2018

Theo đề ta có: \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\)

\(\Rightarrow x=5k;y=4k;z=3k\)

\(P=\frac{x+2y+3z}{x-2y+3z}=\frac{5k+2.4k+3.3k}{5k-2.4k+3.3k}=\frac{5k+8k+9k}{5k-8k+9k}=\frac{22k}{6k}=\frac{11}{3}\)

Chúc bn hc tốt!

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

7 tháng 3 2020

\(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\Rightarrow\frac{2x}{4}=\frac{2y}{3}=\frac{3z}{4}=\frac{2\left(x+y+x\right)+z}{4+3+4}=\frac{2.145+z}{11}\)

\(\Rightarrow\frac{3z}{4}=\frac{290+z}{11}\Rightarrow z=10\)

Từ đó tìm ra x,y thông qua biểu thức \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}=\frac{3.10}{4}=\frac{15}{2}\)

Theo bài ra ta cs 

\(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}\)và \(x+y+z=145\)

ADTC dãy tỉ số bằng nhau ta cs 

\(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x+y+z}{2+\frac{3}{2}+\frac{4}{3}}=\frac{145}{\frac{29}{6}}=30\)

\(\hept{\begin{cases}\frac{x}{2}=30\\\frac{y}{\frac{3}{2}}=30\\\frac{z}{\frac{4}{3}}=30\end{cases}\Rightarrow\hept{\begin{cases}x=60\\y=45\\z=40\end{cases}}}\)

2 tháng 8 2017

oanh ngố dễ vậy mà ko làm được

3 tháng 8 2017

đã học đâu mà biết hôm nay mới học nè ! 

4 tháng 7 2017

2.

a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\)

\(\Rightarrow x=6;y=8;z=10\)

b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)( 1 )

\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{3x-2y-z}{54-48-32}=\frac{13}{-26}=\frac{-1}{2}\)

\(\Rightarrow x=-9;y=-12;z=-16\)

3.

a) \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)

\(\Rightarrow x=12;y=28;z=8\)

b) x : y : z = 2 : 5 : 7

\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)'

\(\Rightarrow x=6;y=15;z=21\)

4 tháng 7 2017

2) a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{5z}{25}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\) (theo t/c dãy tỉ số bằng nhau)

=> x = 2.3 = 6 ; y = 2.4 = 8; z = 2.5 = 10

b, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{12}=\frac{z}{16}\)

\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\Rightarrow\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\) (theo t/c của dãy tỉ số bằng nhau)

=> x=(-1).9=-9 ; y=(-1).12=-12 ; z=(-1).16=-16

c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)

Ta có: xy+yz+zx=104

=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104

=> 6k2 + 12k2 + 8k2 = 104

=> k2(6+12+8) = 104

=> 26k2  = 104

=> k2 = 4

=> k = ±2

Với k = 2 thì \(\hept{\begin{cases}x=2.2=4\\y=2.3=6\\z=2.4=8\end{cases}}\)

Với k = -2 thì \(\hept{\begin{cases}x=2.\left(-2\right)=-4\\y=\left(-2\right).3=-6\\z=\left(-2\right).4=-8\end{cases}}\)

3) a, Đặt k=x/3=y/7=z/2

\(k=\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\Rightarrow k^2=\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{4}=\frac{2x^2}{18}=\frac{y^2}{49}=\frac{3z^2}{12}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)

=> k2 = 4 => k = ±2

Với k = 2 thì \(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=4\\\frac{y}{3}=2\Rightarrow y=6\\\frac{z}{4}=2\Rightarrow z=8\end{cases}}\)

Với k = -2 thì \(\hept{\begin{cases}\frac{x}{2}=-2\Rightarrow x=-4\\\frac{y}{3}=-2\Rightarrow y=-6\\\frac{z}{4}=-2\Rightarrow z=-8\end{cases}}\)

b, \(x:y:z=2:5:7\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)

=> x = 2.3 = 6 ; y = 5.3 = 15 ; z = 7.3 = 21

3 tháng 10 2018
a, 4x=5y=> x/5=y/4 => x/5=y/4=3x/15=2y/8 => 3x-2y/15-8=35/7=5( theo tính chất dãy tỉ số bằng nhau) => x=25;y=20 b, x/2=y/3=z/5 =>x+y+z/2+3+5=-90/10=-9(theo tính chất dãy tỉ số bằng nhau) =>x=-18;y=-27;z=-45 c, x:y:z=3:5:(-2) => x/3=y/5=z/-2 =5x/15=y/5=3z/-6 =>5x-y+3z/15-5+(-6)(theo tính chất dãy tỉ số bằng nhau) =124/4=31 =>x=93;y=155;z=-62 Mik sẽ bổ sung sau vì máy mik sắp hết pin