Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo đề bài, ta có:
\(x:y:z=2:4:6\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)và \(3x-y+z=24\)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{3x-y+z}{2.3-4+6}=\frac{24}{8}=3\)
\(.\frac{x}{2}=3\Rightarrow x=3.2=6\)
\(.\frac{y}{4}=3\Rightarrow y=3.4=12\)
\(.\frac{z}{6}=3\Rightarrow z=3.6=18\)
Vậy\(x,y,z\) lần lượt là: \(6,12,18\)
b) Vì x, y, z tỉ lệ nghịch với 6, 10, 4 nên ta có:
\(6x=10y=4z\Rightarrow\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{10}}=\frac{z}{\frac{1}{4}}\)
Theo tính chất của dãy tỉ số bằng nhua, ta có:
\(\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{10}}=\frac{z}{\frac{1}{4}}=\frac{x+2y-3z}{\frac{1}{6}+2.\frac{1}{10}-3.\frac{1}{4}}=\frac{115}{\frac{-23}{60}}=-300\)
\(.\frac{x}{\frac{1}{6}}=-300\Rightarrow x=-300.\frac{1}{6}=-50\)
\(.\frac{y}{\frac{1}{10}}=-300\Rightarrow y=-300.\frac{1}{10}=-30\)
\(.\frac{z}{\frac{1}{4}}=-300\Rightarrow z=-300.\frac{1}{4}=-75\)
Vậy x, y, z lần lượt là: -50; -30; -75
bài 2 :
ta có x:y:z=3:5:(-2)
=>x/3=y/5=z/-2
=>5x/15=y/5=3z/-6
áp dụng tc dãy ... ta có :
5x/15=y/5=3z/-6=5x-y+3z/15-5+(-6)=-16/4=-4
=>x/3=-=>x=-12
=>y/5=-4=>y=-20
=>z/-2=-4=>z=8
1.
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{5}=\frac{y}{7}=\frac{z}{10}=\frac{2x}{10}=\frac{y}{7}=\frac{z}{10}$
$=\frac{2x+y-z}{10+7-10}=\frac{-21}{7}=-3$
$\Rightarrow x=-3.5=-15; y=-3.7=-21; z=-3.10=-30$
2.
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{3}=\frac{y}{4}=\frac{z}{6}=\frac{2x}{6}=\frac{4y}{16}=\frac{3z}{18}$
$=\frac{4y-2x+3z}{16-6+18}=\frac{-56}{28}=-2$
$\Rightarrow x=-2.3=-6; y=-2.4=-8; z=-2.6=-12$
Đặt x/2=y/3=z/5=k
=>x=2k; y=3k; z=5k
xyz=810
\(\Leftrightarrow30k^3=810\)
=>k=3
=>x=6; y=9; z=15
1)
Có:\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\\\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\end{cases}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}}\)
Áp dụng tc của DTSBN có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x-y+z}{8-12+15}=\frac{33}{11}=3\) (vì x-y+z=33)
\(\Rightarrow\hept{\begin{cases}x=3.8=24\\y=3.12=36\\y=3.15=45\end{cases}}\)(tm)
Vậy.....................
2)
Có: \(\text{ x:y:z=2:3:4 }\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x}{2}=\frac{3y}{9}=\frac{2z}{8}\)
Áp dụng tc của DTSBN có:
\(\frac{x}{2}=\frac{3y}{9}=\frac{2z}{8}=\frac{x+3y-2z}{2+9-8}=\frac{3}{3}=1\)(vì x+3y-z=3)
\(\Rightarrow\hept{\begin{cases}x=2\\y=3\\z=4\end{cases}}\)(tm)
Vậy................
theo đề ta có: x:y:z = 2:3:5
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và x + y + z = 40
áp dụng t/c DTSBN ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{40}{10}=4\)
=> \(\hept{\begin{cases}\frac{x}{2}=4=>x=8\\\frac{y}{3}=4=>y=12\\\frac{z}{5}=4=>z=20\end{cases}}\)
vậy x = 8 ; y = 12 ; z = 20
t i c k nhé!! 56546759787668798985425534456456545756756656878776987
ta có x:y:z=2:3:5
=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Và x+y+z=40
Áp dụng tích chất dãy tỉ số bằng nhau
=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{40}{10}=4\)
Do đó
\(\frac{x}{2}=4\)nên x=4*2=8
\(\frac{y}{3}=4\)nên y=4*3=12
\(\frac{z}{5}=4\)nên z=4*5=20
Vậy x=8
y=12
z=20
Ta có : \(x:y:z=2:3:5\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x+y+z=40\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{40}{10}=4\)
\(\Leftrightarrow\begin{cases}\frac{x}{2}=4\Rightarrow x=4.2=8\\\frac{y}{3}=4\Rightarrow y=4.3=12\\\frac{z}{5}=4\Rightarrow z=5.4=20\end{cases}\)
Ta có
\(x:y:z=2:3:5\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{40}{10}=4\)
\(\Rightarrow\begin{cases}x=8\\y=12\\z=20\end{cases}\)
x:y:z= 4:5:6
=>x/4=y/5=z/6
=>x2/16=2y2/50=z2/36
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x2/16=2y2/50=z2/36=x^2- 2y^2+ z^2/16-50+36=18/2=9
suy ra x2/16=9 =>x2=144 =>x=12 hoặc x=-12
2y2/50=9 =>y2=225 => y=15 hoặc y=-15
z2/36=9 =>z2=324 =>z=18 hoặc z=-18
\(x:y:z=4:5:6\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)và x2 - 2y2 + z2 = 18
\(\Rightarrow\frac{x}{4}=\frac{x^2}{4^2}=\frac{x^2}{16}\)
\(\Rightarrow\frac{y}{5}=\frac{2y^2}{2.5^2}=\frac{2y^2}{50}\)
\(\Rightarrow\frac{z}{6}=\frac{z^2}{6^2}=\frac{z^2}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
\(\frac{x^2}{16}=9\Rightarrow x^2=9.16=x^2=144\Rightarrow x=12\)
\(\frac{2y^2}{50}=9\Rightarrow2y^2=9.50=2y^2=450=y^2=450:2=y^2=225\Rightarrow y=15\)
\(\frac{z^2}{36}=9\Rightarrow z^2=9.36=z^2=324\Rightarrow z=18\)
Vậy......
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
bài 1 :
Ta có: 7x=4y ⇔ x/4=y/7
áp dụng tính chất dãy tỉ số bằng nhau ta có
x/4=y/7=(y-x)/(7-4)=100/3
⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3
bài 2
ta có x/5 = y/6 ⇔ x/20=y/24
y/8 = z/7 ⇔ y/24=z/21
⇒x/20=y/24=z/21
ADTCDTSBN(bài 1 có)
x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16
⇒x= 20 x 23/16 = 115/4
y= 24x 23/16=138/2
z=21x23/16=483/16
Ta có: \(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{x+2y-z}{5+6-4}=\frac{-121}{7}\)
\(\Rightarrow\begin{cases}x=\frac{-121}{7}.5=\frac{-605}{7}\\y=\frac{-121}{7}.3=\frac{-363}{7}\\z=\frac{-121}{7}.4=\frac{-484}{7}\end{cases}\)
Vậy \(x=\frac{-605}{7};y=\frac{-363}{7};z=\frac{-484}{7}\)
\(x:y:z=3:5:6\)\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\)
mà \(x+y-z=24\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=\frac{x+y-z}{3+5-6}=\frac{24}{2}=12\)
\(\Rightarrow x=12.3=36\); \(y=12.5=60\); \(z=12.6=72\)
Vậy \(x=36\); \(y=60\); \(z=72\)
Ta có : \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=\frac{x+y-z}{3+5-6}=\frac{24}{2}=12\)
\(x=36;y=60;z=72\)