K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

\(x^2+y^2+z^2-x-y-z+0,75=0\)

\(\Leftrightarrow x^2+y^2+z^2-x-y-z+\frac{3}{4}=0\)

\(\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)+\left(z^2-z+\frac{1}{4}\right)=0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2+\left(z-\frac{1}{2}\right)^2=0\)

Dễ thấy: \(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2+\left(z-\frac{1}{2}\right)^2\ge0\)

Xảy ra khi \(\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\\z-\frac{1}{2}=0\end{cases}}\)\(\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\\z-\frac{1}{2}=0\end{cases}}\)

30 tháng 8 2021

thêm x2+y2+z2=1 nha

thêm x2 + y+ z= 1 nha

      HT nha vinh

18 tháng 6 2016

ta có 

(x^2+y^2+z^2)^2=z^4+y^4+z^4+2(x^2y^2+y^2z^2+z^2x^2)=2016^2

(x+y+z)^2=x^2+y^2+z^2=x^2+y^2+z^2+2(xy+yz+xz)=0

nên xy+zy+xz=-1008

Ta có (xy+yz+xz)^2=x^2y^2+y^2z^2+x^2z^2+2xyz(x+y+z)=(-1008)^2     hay    x^2y^2+y^2z^2+z^2x^2=(-1008)^2

Vậy x^4+y^4+z^4+2(-1008)^2=2016^2         sau đó bạn tự tính nhé vì số to quá

18 tháng 6 2016
=4064256
5 tháng 11 2018

\(x+y+z=0\)

\(\Leftrightarrow\left(x+y+z\right)^2=0\)

\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=0\)

\(\Leftrightarrow2+2\left(xy+yz+xz\right)=0\)

\(\Leftrightarrow2\left(xy+yz+xz\right)=-2\)

\(\Leftrightarrow xy+yz+xz=-1\)

\(\Leftrightarrow\left(xy+yz+xz\right)^2=1\)

\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2+2xyyz+2xyxz+2yzxz=1\)

\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2+2xyz\left(x+y+z\right)=1\)

\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2+2xyz\cdot0=1\)

\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2=1\)(*)

Ta lại có : \(x^2+y^2+z^2=2\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=2^2\)

\(\Leftrightarrow x^4+y^4+z^4+2x^2y^2+2x^2z^2+2y^2z^2=4\)

\(\Leftrightarrow x^4+y^4+z^4+2\left(x^2y^2+x^2z^2+y^2z^2\right)=4\)

Thay (*) vào đẳng thức ta có :

\(x^4+y^4+z^4+2\cdot1=4\)

\(\Leftrightarrow x^4+y^4+z^4=4-2=2\)

Vậy \(x^4+y^4+z^4=2\)tại \(x+y+z=0;x^2+y^2+z^2=2\)

15 tháng 11 2018

\(\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2+y^2+z^2}{5}\)

\(\Rightarrow\frac{x^2}{2}-\frac{x^2}{5}+\frac{y^2}{3}-\frac{y^2}{5}+\frac{z^2}{4}-\frac{z^2}{5}=0\)

\(\Rightarrow\frac{3}{10}x^2+\frac{2}{15}y^2+\frac{1}{20}z^2=0\Rightarrow x=y=z=0\)

9 tháng 4 2016

Bài  \(1a.\)  Tìm  \(x,y,z\)  biết \(x^2+4y^2=2xy+1\)   \(\left(1\right)\)  và  \(z^2=2xy-1\)  \(\left(2\right)\)

Cộng  \(\left(1\right)\)  và  \(\left(2\right)\)  vế theo vế, ta được:

\(x^2+4y^2+z^2=4xy\)

\(\Leftrightarrow\)  \(x^2-4xy+4y^2+z^2=0\)

\(\Leftrightarrow\)  \(\left(x-2y\right)^2+z^2=0\)

Do  \(\left(x-2y\right)^2\ge0\)  và  \(z^2\ge0\)  với mọi  \(x,y,z\)

nên để thỏa mãn đẳng thức trên thì phải đồng thời xảy ra  \(\left(x-2y\right)^2=0\)  và  \(z^2=0\)

\(\Leftrightarrow\)  \(^{x-2y=0}_{z^2=0}\)  \(\Leftrightarrow\)  \(^{x=2y}_{z=0}\)

Từ  \(\left(2\right)\), với chú ý rằng  \(x=2y\)  và  \(z=0\), ta suy ra:

\(2xy-1=0\)  \(\Leftrightarrow\)  \(2.\left(2y\right).y-1=0\)  \(\Leftrightarrow\)  \(4y^2-1=0\)  \(\Leftrightarrow\)  \(y^2=\frac{1}{4}\)  \(\Leftrightarrow\)  \(y=\frac{1}{2}\)  hoặc  \(y=-\frac{1}{2}\)

\(\text{*)}\)  Với  \(y=\frac{1}{2}\) kết hợp với \(z=0\) \(\left(cmt\right)\)  thì  \(\left(2\right)\)  \(\Rightarrow\)  \(2.x.\frac{1}{2}-1=0\)  \(\Leftrightarrow\)  \(x=1\)

\(\text{*)}\)  Tương tự với trường hợp  \(y=-\frac{1}{2}\), ta cũng dễ dàng suy ra được \(x=-1\)

Vậy, các cặp số  \(x,y,z\)  cần tìm là  \(\left(x;y;z\right)=\left\{\left(1;\frac{1}{2};0\right),\left(-1;-\frac{1}{2};0\right)\right\}\)

\(b.\)  Vì  \(x+y+z=1\)  nên  \(\left(x+y+z\right)^2=1\)

\(\Leftrightarrow\)  \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=1\)  \(\left(3\right)\)

Mặt khác, ta lại có  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)  \(\Rightarrow\)  \(xy+yz+xz=0\)  \(\left(4\right)\) (do  \(xyz\ne0\))

Do đó,  từ  \(\left(3\right)\) và \(\left(4\right)\)  \(\Rightarrow\)  \(x^2+y^2+z^2=1\)

Vậy,  \(B=1\)

9 tháng 4 2016

1a) x=1, y=1/2, z=0

DD
30 tháng 1 2021

\(x-y-z+3=0\Leftrightarrow x=y+z-3\)

\(x^2-y^2-z^2=\left(y+z-3\right)^2-y^2-z^2=y^2+z^2+9+2yz-6y-6z-y^2-z^2\)

\(=2yz-6y-6z+9=1\)

\(\Leftrightarrow yz-3y-3z+4=0\)

\(\Leftrightarrow\left(y-3\right)\left(z-3\right)=5=1.5=\left(-1\right).\left(-5\right)\)

Xét bảng: 

y-315-1-5
z-351-5-1
y482-2
z84-22
x99-3-3