K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2015

\(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x-y+z-t}{15-7+3-1}=\frac{10}{10}=1\)

x=15

y=7

z=3

t=1

4 tháng 11 2015

z = 3

Tick mk nha avt209687_60by60.jpg _Công chúa nhỏ _

23 tháng 6 2015

Ta co : 

x:y:z:t=15:7:3:1 va x-y+z-t=10

Theo de bai ta co:

\(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}\) va x-y+z-t = 10

Áp dụng tính chất tỉ số bằng nhau ta có :

\(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}\Rightarrow\frac{x-y+z-t}{15-7+3-1}=\frac{10}{10}=1\)

Suy ra : \(\frac{x}{15}=1\Rightarrow x=15.1=15\)

\(\frac{y}{7}=1\Rightarrow y=1.7=7\)

\(\frac{z}{3}=1\Rightarrow z=1.3=3\)

\(\frac{t}{1}=1\Rightarrow t=1.1=1\)

Vay : x=15 ; y=7 ; z=3 ; t=1

5 tháng 12 2021

Ta có:

x5=y6⇒x20=y24x5=y6⇒x20=y24   (1)(1)

y8=z7=y24=z21y8=z7=y24=z21    (2)(2)

Từ (1)(1) và (2)(2) ⇒x20=y24=z21⇒x20=y24=z21

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

x20=y24=z21=x+y−z20+24−21=6923=3x20=y24=z21=x+y-z20+24-21=6923=3

⇒⎧⎪⎨⎪⎩x=60y=72z=63⇒{x=60y=72z=63

Vậy x=60;y=72x=60;y=72 và z=63

3 tháng 10 2016

A)Dựa vào tính chất của dãy tỉ số bằng nhau:

x/1 = y/2 = z/3 = 4x -3y +2z /4.1 -3.2 +2.3 =36/4 =9

x/1=9 =>x=9.1=9

y/2=9=>y=9.2=18

z/3=9=>z=9.3=27

B)Dựa vào tính chất của dãy tỉ số bằng nhau:

x/3=y/8=z/5=3x+y-2z/3.3+8-2.5=14/7=2

x/3=2=>x=2.3=6

y/8=2=>y=2.8=16

z/5=2=>z=2.5=10

C)Dựa vào tính chất của dãy tỉ số bằng nhau:

x/3=y/8=z/5=2y+3y-z/2.3+3.8-5=50/25=2

x/3=2=>x=2.3=6

y/8=2=>y=2.8=16

z/5=2=>z=2.5=10

20 tháng 6 2024

A)Dựa vào tính chất của dãy tỉ số bằng nhau:

x/1 = y/2 = z/3 = 4x -3y +2z /4.1 -3.2 +2.3 =36/4 =9

x/1=9 =>x=9.1=9

y/2=9=>y=9.2=18

z/3=9=>z=9.3=27

B)Dựa vào tính chất của dãy tỉ số bằng nhau:

x/3=y/8=z/5=3x+y-2z/3.3+8-2.5=14/7=2

x/3=2=>x=2.3=6

y/8=2=>y=2.8=16

z/5=2=>z=2.5=10

C)Dựa vào tính chất của dãy tỉ số bằng nhau:

x/3=y/8=z/5=2y+3y-z/2.3+3.8-5=50/25=2

x/3=2=>x=2.3=6

y/8=2=>y=2.8=16

z/5=2=>z=2.5=10

22 tháng 10 2020

Đặt y/9 = a

suy ra x =10a, y=9a, z = 12a

thay vào tìm a...

2 tháng 7 2015

a/ x/2 = y/3 = z/5 và x+y+z = -90

áp dụng tính chất của dãy tỉ số bằng nhau, có:

 \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{-90}{10}=-9\)

suy ra: \(\frac{x}{2}=-9\Rightarrow x=-9\cdot2=-18\)

\(\frac{y}{3}=-9\Rightarrow y=-9\cdot3=-27\)

\(\frac{z}{5}=-9\Rightarrow z=-9\cdot5=-45\)

2 tháng 7 2015

a/ x/2 = y/3 = z/5 và x+y+z = -90

áp dụng tính chất của dãy tỉ số bằng nhau, có:

 \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{-90}{10}=-9\)

suy ra: \(\frac{x}{2}=-9\Rightarrow x=-9\cdot2=-18\)

\(\frac{y}{3}=-9\Rightarrow y=-9\cdot3=-27\)

\(\frac{z}{5}=-9\Rightarrow z=-9\cdot5=-45\)

b/ 2x =3y= 5z và x-y+z =-33

=> 2x = 3y, 3y = 5z

=> x/3 = y/2, y/5 = z/3

=> x/15 = y/10 = z/6 và x - y + z = -33

áp dụng tính chất của dãy tỉ số bằng nhau, có:

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y+z}{15-10+6}=\frac{-33}{11}=-3\)

suy ra: \(\frac{x}{15}=-3\Rightarrow x=-3\cdot15=-45\)

\(\frac{y}{10}=-3\Rightarrow y=-3\cdot10=-30\)

\(\frac{z}{6}=-3\Rightarrow z=-3\cdot6=-18\)

27 tháng 10 2019

1) Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{12x-15y}{7}=\frac{20y-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)

 \(\Rightarrow\hept{\begin{cases}12x-15y=0\\15y-20z=0\end{cases}\Rightarrow}\hept{\begin{cases}12x=15y\\15y=20z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{y}{12}\\\frac{y}{20}=\frac{z}{15}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{75}=\frac{y}{60}\\\frac{y}{60}=\frac{z}{45}\end{cases}\Rightarrow}\frac{x}{75}=\frac{y}{60}=\frac{z}{45}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)

=> x = 75.4 : 15 = 20 ;

     y = 60.4 : 15 = 16 ;

     z = 45.4 : 15 = 12

Vậy x = 20 ; y = 16 ; z = 12 

27 tháng 10 2019

2) Từ đẳng thức \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Rightarrow\frac{z}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{t+x+y}=\frac{x+y+z+t}{x+y+z}\)

Nếu x + y + z + t = 0

=> x + y = - (z + t)

=> y + z = - (t + x)

=> z + t = - (x + y)

=> t + x = - (z + y)

Khi đó : 

P =  \(\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(z+y\right)}{z+y}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

=> P = 4 

Nếu x + y + z + t khác 0 

=> \(\frac{1}{y+z+t}=\frac{1}{z+t+x}=\frac{1}{t+x+y}=\frac{1}{x+y+z}\)

=> y + z + t = z + t + x = t + x + y = x + y + z

=> x =y = z = t

Khi đó : P = 1 + 1 + 1 + 1 = 4

Vậy nếu x + y + z + t = 0 thì P = - 4

       nếu x + y + z + t khác 0 thì P = 4

11 tháng 10 2020

Mình ko ghi áp dụng tính chất dãy bằng nhau nx nhé

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=2\Rightarrow x=2.2=4;y=2.3=6;z=2.4=8\)

\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{-z}{-7}=\frac{x+y-z}{5-6-7}=\frac{32}{-8}=-4\Leftrightarrow x=-20;y=24;z=-28\)

\(\frac{2x}{10}=\frac{3y}{6}=\frac{5z}{15}=\frac{2x-3y+5z}{10-6+15}=\frac{38}{19}=2\Rightarrow x=10;y=4;z=6\)

11 tháng 10 2020

bn làm đúng rồi nhá và 1 k cho bạn

7 tháng 12 2015

\(\frac{y+x+1}{x}=\frac{x+z+2}{y}=\frac{z+y-3}{z}=\frac{y+x+1+x+z+2+z+y-3}{x+y+z}=\frac{2x+2y+2z}{x+y+z}=\frac{1}{x+y+z}\)

=> 2x+2y+2z = 1

=> 2(x+y+z) = 1

=> x+y+z = 1/2