K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2019

căn bậc 2 của x+y+z nhé (vẽ xấu quá thông cảm.)

9 tháng 11 2016

a) \(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có:

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}=\frac{2x}{4}=\frac{3y}{15}=\frac{z}{4}=\frac{2x-3y+z}{4-15+4}=\frac{112}{7}=16\)

\(\frac{x}{2}=16=>x=32\)

\(\frac{y}{5}=16=>x=80\)

\(\frac{z}{4}=16=>z=64\)

Câu b) tương tự chỉ cần thay số vào nha bạn

AH
Akai Haruma
Giáo viên
29 tháng 10 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn dễ hơn nhé.

22 tháng 6 2017

a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)

22 tháng 6 2017

e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)

Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).

20 tháng 9 2017

a, 3x-(2x+1)\(=2\)

\(\Leftrightarrow3x-2x-1=2\)

\(\Leftrightarrow3x-2x=2+1\)

\(\Leftrightarrow x=3\)

3 tháng 10 2017

a) \(3x-\left(2x+1\right)=2\)

\(3x-2x-1=2\)

\(x-1=2\)

\(x=3\)

vay \(x=3\)

26 tháng 11 2014

1) ADTCDTSBN, ta có:

 \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)\(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4

\(\frac{x}{3}=4\)=> x = 3 . 4 = 12

\(\frac{y}{4}=4\)=> y = 4 . 4 = 16

\(\frac{z}{5}=4\)=> z = 5 . 4 = 20

Vậy x = 12

       y = 16

       z = 20

 

1 tháng 2 2015

x=12

y=16

z=20

22 tháng 6 2015

b) 3x = 2y

=>  x/2 = y/3      (1)

7y = 5z

=> y/5 = z/7       (2)

Từ (1) và (2), có:

     \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

áp dụng tính chất của dãy tỉ số bằng nhau, có:

     \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

x/10 = 2            => x = 2 x 10 =20

y/15 = 2            => y = 2 x 15 = 30

z/21 = 2            => z = 2 x 21 = 42

Ta có: \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)

\(\Leftrightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)

mà 2x+3y-z=95

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x-3+3y-6-z+3}{4+9-4}=\dfrac{95-6}{9}=\dfrac{89}{9}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{2x-2}{4}=\dfrac{89}{9}\\\dfrac{3y-6}{9}=\dfrac{89}{9}\\\dfrac{z-3}{4}=\dfrac{89}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-2=\dfrac{356}{9}\\3y-6=89\\z-3=\dfrac{356}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{374}{9}\\3y=95\\z=\dfrac{383}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{187}{9}\\y=\dfrac{95}{3}\\z=\dfrac{383}{9}\end{matrix}\right.\)

Vậy: (x,y,z)=\(\left(\dfrac{187}{9};\dfrac{95}{3};\dfrac{383}{9}\right)\)