Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy , ta có :
\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\ge\dfrac{x^3}{\dfrac{x^2+1-x^2}{2}}=2x^3\)
\(\dfrac{y^2}{\sqrt{1-y^2}}=\dfrac{y^3}{y\sqrt{1-y^2}}\ge\dfrac{y^3}{\dfrac{y^2+1-y^2}{2}}=2y^3\)
\(\dfrac{z^2}{\sqrt{1-z^2}}=\dfrac{z^3}{z\sqrt{1-z^2}}\ge\dfrac{z^3}{\dfrac{z^2+1-z^2}{2}}=2z^3\)
\(\Rightarrow\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\)
Áp dụng BĐT AM-GM, Ta có
\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\Rightarrow yz\sqrt{x-1}\le\dfrac{xyz}{2}\)
Mà \(xz\sqrt{y-2}\le\dfrac{xz\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\)
\(yx\sqrt{z-3}\le yx.\dfrac{3+z-3}{2\sqrt{3}}=\dfrac{xyz}{2\sqrt{3}}\)
\(\Rightarrow\dfrac{xy\sqrt{x-1}+xz\sqrt{y-2}+yz\sqrt{z-3}}{xyz}\le\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}=\dfrac{1}{2}+\dfrac{\sqrt{2}}{4}+\dfrac{\sqrt{3}}{6}\)
\(\dfrac{\sqrt{1\left(x-1\right)}}{x}\le\dfrac{1+x-1}{2x}=\dfrac{1}{2}\) ( cauchy )
TT,\(\dfrac{\sqrt{y-2}}{y}\le\dfrac{1}{2\sqrt{2}};\dfrac{\sqrt{z-3}}{z}\le\dfrac{1}{2\sqrt{3}}\)
cộng vế theo vế => đpcm
Thì biết pass facebook thôi chứ cũng không biết có hack không
Bạn ấy đăng nhập bằng FACEBOOK mà
\(\sqrt{x-1}+\sqrt{y-2}+\sqrt{z-3}=6-\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{y-2}}-\dfrac{1}{\sqrt{z-3}}\Leftrightarrow\left(\sqrt{x-1}+\dfrac{1}{\sqrt{x-1}}\right)+\left(\sqrt{y-2}+\dfrac{1}{\sqrt{y-2}}\right)+\left(\sqrt{z-3}+\dfrac{1}{\sqrt{z-3}}\right)=6\)Áp dụng bất đẳng thức cô si ta có :
\(\sqrt{x-1}+\dfrac{1}{\sqrt{x-1}}\ge2\sqrt{\sqrt{x-1}.\dfrac{1}{\sqrt{x-1}}}=2\)
Tương tự :\(\sqrt{y-2}+\dfrac{1}{\sqrt{y-2}}\ge2\)
\(\sqrt{z-3}+\dfrac{1}{\sqrt{z-3}}\ge2\)
Do đó :\(\left(\sqrt{x-1}+\dfrac{1}{\sqrt{x-1}}\right)+\left(\sqrt{y-2}+\dfrac{1}{\sqrt{y-2}}\right)+\left(\sqrt{z-3}+\dfrac{1}{\sqrt{z-3}}\right)\ge6\)Dấu "=+ xảy ra khi :\(\left\{{}\begin{matrix}\sqrt{x-1}=\dfrac{1}{\sqrt{x-1}}\\\sqrt{y-2}=\dfrac{1}{\sqrt{y-2}}\\\sqrt{z-3}=\dfrac{1}{\sqrt{z-3}}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=1\\z-3=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\\z=4\end{matrix}\right.\)
Vậy \(x=2,y=3,z=4\)
camon