Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{xy+1}{9}=\frac{xy+1+yz+2+xz+3}{9+15+27}=\frac{\left(xy+yz+xz\right)+6}{51}=\frac{11+6}{51}=\frac{1}{3}\)
\(\Leftrightarrow\frac{xy+1}{9}=\frac{1}{3}\Leftrightarrow3xy+3=9\Leftrightarrow xy=2\left(1\right)\)
\(\Leftrightarrow\frac{yz+2}{15}=\frac{1}{3}\Leftrightarrow3yz+6=15\Leftrightarrow yz=3\left(2\right)\)
\(\Leftrightarrow\frac{xz+3}{27}=\frac{1}{3}\Leftrightarrow3xz+9=27\Leftrightarrow xz=6\left(3\right)\)
Kết hợp (1);(2);(3) ta có \(y=\frac{2}{x}\Rightarrow\frac{2}{x}.z=3\Rightarrow2z=3x\Rightarrow x.\frac{3x}{2}=6\Leftrightarrow3x^2=12\Leftrightarrow x^2=4\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Với \(x=2\Rightarrow y=1;z=3\)
Với \(x=-2\Rightarrow y=-1;z=-3\)
Vậy ....
Áp dụng tính chất dãy tỷ số bằng nhau ta có :
\(\frac{xy+1}{9}\) = \(\frac{yz+2}{15}\) = \(\frac{xz+3}{27}\)= \(\frac{xy+1+yz+2+xz+3}{9+15+27}\) = \(\frac{xy+yz+xz+6}{51}\) (1)
Thay xy +yz + xz = 11 vào (1) ta được :
\(\frac{xy+1}{9}\) = \(\frac{yz+2}{15}\) = \(\frac{xz+3}{27}\) = \(\frac{11+6}{51}\) = \(\frac{1}{3}\) Do đó : xy = \(\frac{1}{3}\). 9 - 1 = 2 => x = \(\frac{2}{y}\) (2) yz = 3 xz = 6 => x = \(\frac{6}{z}\) (3) Từ (2),(3) => x = \(\frac{2}{y}\) = \(\frac{6}{z}\) => x2 = \(\frac{2}{y}\) . \(\frac{6}{z}\) = \(\frac{12}{yz}\) = \(\frac{12}{3}\) = 4 => x = \(\pm\) 2 *) Với x = 2 => y = 2:2 = 1 và z = 6 :2 = 3 *) Với x = -2 => y = 2 : (-2) = -1 và z = 6 : (-2) = -3 Vậy ( x;y;z ) bằng các cặp số sau : ( 2;1;3) hoặc (-2;-1;-3)
\(\frac{xy}{2}=\frac{yz}{4,5}=\frac{xz}{8}=\frac{xy+yz+xz}{2+4,5+8}=\frac{29}{14,5}=2\)
\(\Rightarrow xy=4,yz=9,xz=16\)
\(\Rightarrow\left(xy\right).\left(yz\right).\left(xz\right)=4.9.16\)
\(\Rightarrow\left(xyz\right)^2=2^2.3^2.4^2\Rightarrow\left(xyz\right)^2=24^2\Rightarrow\orbr{\begin{cases}xyz=24\\xyz=-24\end{cases}}\)
Nếu xyz = 24 thì \(\hept{\begin{cases}x=\left(xyz\right):\left(yz\right)=24:9=\frac{8}{3}\\y=\left(xyz\right):\left(xz\right)=24:16=\frac{3}{2}\\z=\left(xyz\right):\left(xy\right)=24:4=6\end{cases}}\)
Nếu xyz = -24 thì \(\hept{\begin{cases}x=\left(xyz\right):\left(xz\right)=-24:9=-\frac{8}{3}\\y=-24:16=-\frac{3}{2}\\z=-24:4=-6\end{cases}}\)