Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{xy+1}{9}=\frac{xy+1+yz+2+xz+3}{9+15+27}=\frac{\left(xy+yz+xz\right)+6}{51}=\frac{11+6}{51}=\frac{1}{3}\)
\(\Leftrightarrow\frac{xy+1}{9}=\frac{1}{3}\Leftrightarrow3xy+3=9\Leftrightarrow xy=2\left(1\right)\)
\(\Leftrightarrow\frac{yz+2}{15}=\frac{1}{3}\Leftrightarrow3yz+6=15\Leftrightarrow yz=3\left(2\right)\)
\(\Leftrightarrow\frac{xz+3}{27}=\frac{1}{3}\Leftrightarrow3xz+9=27\Leftrightarrow xz=6\left(3\right)\)
Kết hợp (1);(2);(3) ta có \(y=\frac{2}{x}\Rightarrow\frac{2}{x}.z=3\Rightarrow2z=3x\Rightarrow x.\frac{3x}{2}=6\Leftrightarrow3x^2=12\Leftrightarrow x^2=4\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Với \(x=2\Rightarrow y=1;z=3\)
Với \(x=-2\Rightarrow y=-1;z=-3\)
Vậy ....
\(\frac{xy}{2}=\frac{yz}{4,5}=\frac{xz}{8}=\frac{xy+yz+xz}{2+4,5+8}=\frac{29}{14,5}=2\)
\(\Rightarrow xy=4,yz=9,xz=16\)
\(\Rightarrow\left(xy\right).\left(yz\right).\left(xz\right)=4.9.16\)
\(\Rightarrow\left(xyz\right)^2=2^2.3^2.4^2\Rightarrow\left(xyz\right)^2=24^2\Rightarrow\orbr{\begin{cases}xyz=24\\xyz=-24\end{cases}}\)
Nếu xyz = 24 thì \(\hept{\begin{cases}x=\left(xyz\right):\left(yz\right)=24:9=\frac{8}{3}\\y=\left(xyz\right):\left(xz\right)=24:16=\frac{3}{2}\\z=\left(xyz\right):\left(xy\right)=24:4=6\end{cases}}\)
Nếu xyz = -24 thì \(\hept{\begin{cases}x=\left(xyz\right):\left(xz\right)=-24:9=-\frac{8}{3}\\y=-24:16=-\frac{3}{2}\\z=-24:4=-6\end{cases}}\)
áp dụng t/c dãy tỉ số = nhau ,cộng xy+yz+zx vào =>rút ra xy;yz;zx rồi nhân từng vế các đẳng thức =>suy ra x,y,z(mk lười làm)
\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)
\(=\frac{xz+z+1}{xz+z+1}=1\)
=>đpcm
2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1
= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1
= xz/1+xz+z + 1/z+1+xz + z/xz+z+1
= xz+1+x/1+xz+x = 1 (đpcm)
Áp dụng tính chất dãy tỷ số bằng nhau ta có :
\(\frac{xy+1}{9}\) = \(\frac{yz+2}{15}\) = \(\frac{xz+3}{27}\)= \(\frac{xy+1+yz+2+xz+3}{9+15+27}\) = \(\frac{xy+yz+xz+6}{51}\) (1)
Thay xy +yz + xz = 11 vào (1) ta được :
\(\frac{xy+1}{9}\) = \(\frac{yz+2}{15}\) = \(\frac{xz+3}{27}\) = \(\frac{11+6}{51}\) = \(\frac{1}{3}\) Do đó : xy = \(\frac{1}{3}\). 9 - 1 = 2 => x = \(\frac{2}{y}\) (2) yz = 3 xz = 6 => x = \(\frac{6}{z}\) (3) Từ (2),(3) => x = \(\frac{2}{y}\) = \(\frac{6}{z}\) => x2 = \(\frac{2}{y}\) . \(\frac{6}{z}\) = \(\frac{12}{yz}\) = \(\frac{12}{3}\) = 4 => x = \(\pm\) 2 *) Với x = 2 => y = 2:2 = 1 và z = 6 :2 = 3 *) Với x = -2 => y = 2 : (-2) = -1 và z = 6 : (-2) = -3 Vậy ( x;y;z ) bằng các cặp số sau : ( 2;1;3) hoặc (-2;-1;-3)cảm ơn bạn nha