Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 10x . 5y = 20y
=> 10x = (20 : 5)y
=> 10x = 4y
Với x ; y > 0 thì
10x = ...0 ;
4y = ...4 ; ...6 ;
=> Không có x;y thỏa mãn
=> x = y = 0
b) 2x = 4y - 1
=> 2x = 22y - 2
=> x = 2y - 2 (1)
Lại có 27y = 3x + 8
=> 33y = 3x + 8
=> 3y = x + 8
=> x = 3y - 8 (2)
Từ (1) và (2) => 2y - 2 = 3y - 8
=> y = 6
=> x = 10
Vậy x = 10 ; y = 6
Lời giải:
a. $3x-5y+1=3.\frac{1}{3}-5.\frac{-1}{5}+1=1+1+1=3$
b.
Với $x=1$ thì $3x^2-2x-5=3.1^2-2.1-5=-4$
Với $x=-1$ thì $3x^2-2x-5=3(-1)^2-2.(-1)-5=0$
Với $x=\frac{5}{3}$ thì $3x^2-2x-5=3(\frac{5}{3})^2-2.\frac{5}{3}-5=0$
c.
$x-2y^2+z^3=4-2.(-1)^2+(-1)^3=1$
d.
$xy-x^2-xy^3=(-1)(-1)-(-1)^2-(-1)(-1)^3=-1$
a) theo tính chất của dãy tỉ số bằng nhau có
\(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}=\frac{x-y-z-x+y-z-x-y+z}{x+y+z}=\frac{-\left(x+y+z\right)}{x+y+z}=-1\)
=> x - y - z = - x => 2.x = y + z
y - x - z = - y => 2.y = x+z
z - x - y = - z => 2.z = x+y
Ta có: \(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)=\frac{x+y}{x}.\frac{y+z}{y}.\frac{z+x}{z}=\frac{2z}{x}.\frac{2x}{y}.\frac{2y}{z}=\frac{2xyz}{xyz}=2\)
b) Vì \(\left|x+3y-1\right|\ge0\); \(-3\left|y+3\right|\le0\)
=> \(\left|x+3y-1\right|=-3\left|y+3\right|\) khi \(\left|x+3y-1\right|=-3\left|y+3\right|=0\)
=> x+ 3y - 1 = 0 và y + 3 = 0
=> x = 1 - 3y và y = -3 => x = 1- 3(-3) = 10; y = -3
=> C = 4.102.(-3) + 2.10.(-3)2 - (-3)2 = -1029
theo minh thấy bạn nên hỏi từng câu thì sẽ dễ giải hơn ý
Trả lời:
a, \(\left(3x+y-z\right)-\left(4x-2y+6z\right)=3x+y-z-4x+2y-6z=-x+3y-7z\)
b, \(K=2x\left(-3x+5\right)+3x\left(2x-12\right)+26x=-6x^2+10x+6x^2-36x+26x=0\)
d, \(A=3x^2\left(x-1\right)-\left(3x^2+x\right)=3x^3-3x^2-3x^2-x=3x^3-6x^2+x\)
e, \(B=y\left(2y^2+1\right)-y^2\left(2+2y-y^2\right)=2y^3+y-2y^2-2y^3+y^4=y^4-2y^2+y\)