Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+4\left(x+y\right)+4+\left(x^2-12x+36\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+4\left(x+y\right)+4+\left(x-6\right)^2=0\)
\(\Leftrightarrow\left(x+y+2\right)^2+\left(x-6\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\x+y+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=-8\end{matrix}\right.\)
\(y^2+2xy-12x+4\left(x+y\right)+2x^2+40=0\\ \Leftrightarrow\left[\left(x^2+2xy+y^2\right)+4\left(x+y\right)+4\right]+\left(x^2-12x+36\right)=0\\ \Leftrightarrow\left(x+y+2\right)^2+\left(x-6\right)^2=0\)
Vì \(\left\{{}\begin{matrix}\left(x+y+2\right)^2\ge0\forall x,y\\\left(x-6\right)^2\ge0\forall x\end{matrix}\right.\)
Nên \(\left(x+y+2\right)^2+\left(x-6\right)^2\ge0\forall x,y\)
Dấu"=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x+y+2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-8\\x=6\end{matrix}\right.\)
Vậy x = 6 và y = -8
Đề \(\Leftrightarrow x^2-2xy+y^2+y^2+2y+1+x^2+2x+1-x^2+2x-1+12=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y+1\right)^2+\left(x+1\right)^2-\left(x-1\right)^2+12=0\left(1\right)\)
Ta có: \(\left(x-y\right)^2\ge0,\left(y+1\right)^2\ge0,\left(x+1\right)^2\ge0\ge-\left(x-1\right)^2\)
nên \(\left(x-y\right)^2+\left(y+1\right)^2+\left(x+1\right)^2-\left(x-1\right)^2>0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y+1\right)^2+\left(x+1\right)^2-\left(x-1\right)^2+12>12>0\)
\(\Rightarrow\left(1\right)\)vô lí.
Vậy \(S=\varnothing\)
a, (3 - \(x\))(4y + 1) = 20
Ư(20) = { -20; -10; -5; -4; -2; -1; 1; 2; 4; 5; 10; 20}
Lập bảng ta có:
\(3-x\) | -20 | -10 | -5 | -4 | -2 | -1 | 1 | 2 | 4 | 5 | 10 | 20 |
\(x\) | 23 | 13 | 8 | 7 | 5 | 4 | 2 | 1 | -1 | -2 | -7 | -17 |
4\(y\) + 1 | -1 | -2 | -4 | -5 | -10 | -20 | 20 | 10 | 5 | 4 | 2 | 1 |
\(y\) | -1/2 | -3/4 | -5/4 | -6/4 | -11/4 | -21/4 | 19/4 | 9/4 | 1 | 3/4 | 1/4 | 0 |
Vậy các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) =(-1; 1); (-17; 0)
b, \(x\left(y+2\right)\)+ 2\(y\) = 6
\(x\) = \(\dfrac{6-2y}{y+2}\)
\(x\in\) Z ⇔ 6 - \(2y⋮\) \(y\) + 2 ⇒-(2y + 4) +10 ⋮ \(y\) + 2 ⇒ -2(\(y\)+2) +10 ⋮ \(y\)+2
⇒ 10 ⋮ \(y\) + 2
Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}
Lập bảng ta có:
\(y+2\) | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
\(y\) | -12 | -7 | -4 | -3 | -1 | 0 | 3 | 8 |
\(x=\) \(\dfrac{6-2y}{y+2}\) | -3 | -4 | -7 | -12 | 8 | 3 | 0 | -1 |
Theo bảng trên ta có các cặp \(x;y\)
nguyên thỏa mãn đề bài lần lượt là:
(\(x;y\) ) =(-3; -12); (-4; -7); (-12; -3); (8; -1); (3; 0); (0;3 (-1; 8)
1) ADTCDTSBN, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)= \(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4
* \(\frac{x}{3}=4\)=> x = 3 . 4 = 12
- \(\frac{y}{4}=4\)=> y = 4 . 4 = 16
* \(\frac{z}{5}=4\)=> z = 5 . 4 = 20
Vậy x = 12
y = 16
z = 20
\(\frac{3x-2y}{2015}=\frac{2x-4x}{2016}=\frac{4y-3z}{2017}\)
\(\Rightarrow\frac{12x-8y}{8060}=\frac{6z-12x}{6048}=\frac{8y-6z}{4034}=\frac{\left(12x-8y\right)+\left(6z-12x\right)+\left(8y-6z\right)}{8060+6048+4034}=0\)
\(\Leftrightarrow\hept{\begin{cases}3x-2y=0\\2z-4x=0\\4y-3z=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x=2y\\2z=4x\\4y=3z\end{cases}}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{x}{2}=\frac{z}{4}\\\frac{y}{3}=\frac{z}{4}\end{cases}}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\left(k\ne0\right)\)
\(\Rightarrow x=2k;y=3k;z=4k\)
Thay vào P ta có
\(P=\frac{4k^2-2.2k.3k-16k^2}{4k^2+9k^2+16k^2}=\frac{k^2\left(4-12-16\right)}{k^2\left(4+9+16\right)}=-\frac{24}{29}\)
= (3x-2y)/4 = (2z-4x)/3 = (4y-3z)/2
= (12x-8y)/16 = (6z-12x)/9
= (8y-6z)/4
= (12x-8y + 6z-12x + 8y-6z)/(16+9+4) = 0
<=>
{12x - 8y = 0
{6z - 12x = 0
{8y - 6z = 0
<=>
{x/2 = y/3
{z/4 = x/2
{y/3 = z/4
<=> x/2 = y/3 = z/4