K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2019

Ta có : \(\frac{2x}{-3}=\frac{-3y}{5}=\frac{z}{4}\)

\(\Rightarrow\frac{x}{\frac{-3}{2}}=\frac{-3y}{5}=\frac{z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{\frac{-3}{2}}=\frac{-3y}{5}=\frac{z}{4}=\frac{x+z}{\frac{-3}{2}+4}=\frac{30}{\frac{5}{2}}=12\)

\(\Rightarrow\hept{\begin{cases}x=12.\frac{-3}{2}=-18\\y=\left(12.5\right):\left(-3\right)=-20\\z=12.4=48\end{cases}}\)

1 tháng 12 2019

cảm ơn bạn

9 tháng 11 2016

a) \(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có:

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}=\frac{2x}{4}=\frac{3y}{15}=\frac{z}{4}=\frac{2x-3y+z}{4-15+4}=\frac{112}{7}=16\)

\(\frac{x}{2}=16=>x=32\)

\(\frac{y}{5}=16=>x=80\)

\(\frac{z}{4}=16=>z=64\)

Câu b) tương tự chỉ cần thay số vào nha bạn

21 tháng 7 2019

Giải:

Ta có: \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{9}=\frac{y}{12}\)

      \(\frac{y}{3}=\frac{z}{5}\) => \(\frac{y}{12}=\frac{z}{20}\)

=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) => \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

  \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

=> \(\hept{\begin{cases}\frac{x}{9}=3\\\frac{y}{12}=3\\\frac{z}{20}=3\end{cases}}\) => \(\hept{\begin{cases}x=3.9=27\\y=3.12=36\\z=3.20=60\end{cases}}\)

Vậy ...

21 tháng 7 2019

Có :     \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)(1)

            \(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)(2)

Từ (1),(2) => \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Ta có : \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

Do đó : \(\frac{x}{9}=3\Rightarrow x=27\)

              \(\frac{y}{12}=3\Rightarrow y=36\)

             \(\frac{z}{20}=3\Rightarrow z=60\)

KL:...

22 tháng 6 2017

a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)

22 tháng 6 2017

e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)

Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).

1)a)

x/3=y/4=>x/15=y/20

y/5=z/7=>y/20=z/28

=>x/15=y/20=z/18

Áp dụng tính chất dãy tỉ số bằng nhau ta có

x/15=y/20=z/28=2x+3y-z/30+60-28=372/62=6

=>x=90

y=120

z=168

b)

2x=3y=5z

2x=3y=>x/3=y/2=>x/15=y/10

3y=5z=>y/5=z/3=>y/10=z/6

Áp dụng tính chất dãy tỉ số bằng nhau ta có

x/15=y/10=z/6=x+y-z/15+10-6=95/19=5

=>x=75

y=50

z=30

10 tháng 6 2016

a) Ta co :x/3=y/4 suy ra x/15=y/20 (1)

y/5=z/7 suy ra y/20=z/28 (2)

Tu (1) va (2) suy ra y/20=x/15=z/28

còn lại tự làm nhé dễ rùi

b)Ta co : 2x=3y=5z suy ra x phan 1/2=y phan 1/3 = z phan 1/5

de rui tu lam nha 

13 tháng 10 2016

\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{z}{1,25}=\frac{2x-3y+z}{3-4+1,25}=\frac{49}{0,25}=196\Rightarrow\hept{\begin{cases}2x=196.3=588\\3y=196.4=784\\4z=196.5=980\end{cases}\Rightarrow\hept{\begin{cases}x=294\\y=261\frac{1}{3}\\z=245\end{cases}}31}\)

22 tháng 6 2015

b) 3x = 2y

=>  x/2 = y/3      (1)

7y = 5z

=> y/5 = z/7       (2)

Từ (1) và (2), có:

     \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

áp dụng tính chất của dãy tỉ số bằng nhau, có:

     \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

x/10 = 2            => x = 2 x 10 =20

y/15 = 2            => y = 2 x 15 = 30

z/21 = 2            => z = 2 x 21 = 42

15 tháng 9 2020

                                                       Bài giải

a, Ta có :

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{50-8}{9}=\frac{45}{9}=5\)

 ( Áp dụng tính chất của dãy tỉ số bằng nhau )

\(\Rightarrow\hept{\begin{cases}x=5\cdot2+1=11\\y=5\cdot3+2=17\\z=5\cdot4+3=23\end{cases}}\)

b, Ta có : 

\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=49\cdot\frac{12}{49}=12\)

( Áp dụng tính chất của dãy tỉ số bằng nhau ) 

\(\Rightarrow\text{ }\hept{\begin{cases}x=12\cdot3\text{ : }2=18\\y=12\cdot4\text{ : }3=16\\z=12\cdot5\text{ : }4=15\end{cases}}\)