Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)/x-2009/=2009-x
TH1:x-2009=2009-x=>x=2009
TH2:x-2009=-(2009-x)=>x-2009=x-2009 đúng với mọi x
b) (2x-1)^2008>=0
(y-2/5)^2008>=0
/x-y-z/>=0
=>2x-1=0
y-2/5=0
x-y-z=0(cái này dùng ngoặc nhọn)
=>x=1/2;y=2/5;z=1/10
\(a)\) \(2009-\left|x-2009\right|=x\)
\(\Leftrightarrow\)\(\left|x-2009\right|=2009-x\)
Ta có : \(\left|x-2009\right|\ge0\)
\(\Rightarrow\)\(2009-x\ge0\)
\(\Rightarrow\)\(x\le2009\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-2009=2009-x\\x-2009=x-2009\end{cases}\Leftrightarrow\orbr{\begin{cases}x+x=2009+2009\\x=x\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x=4018\\x=x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2009\\x=x\end{cases}}}\)
Vậy \(x=2009\)
Chúc bạn học tốt ~
Ta có: \(\hept{\begin{cases}\left(x-1\right)^{2008}=\left[\left(x-1\right)^{1004}\right]^2\ge0\\\left(y-2\right)^{2020}=\left[\left(y-2\right)^{1010}\right]^2\ge0\\\left(x+y-z\right)^{2022}=\left[\left(x+y-z\right)^{1011}\right]^2\ge0\end{cases}}\)
=> Tổng của 3 số dương =0 khi và chỉ khi cả 3 số đều bằng 0
=> \(\hept{\begin{cases}\left[\left(x-1\right)^{1004}\right]^2=0\\\left[\left(y-2\right)^{1010}\right]^2=0\\\left[\left(x+y-z\right)^{1011}\right]^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x-1=0\\y-2=0\\x+y-z=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)
Đáp số: x=1, y=2, z=3
4)
a)Vì I2x+3I\(\ge\)0
=>-I2x+3I\(\le\)0
=>8-I2x+3I\(\le\)8
Dấu = xảy ra khi : 2x+3=0
2x=-3
x=-3/2
Vậy GTLN của A là 8 tại x=-3/2
b)Vì (2x-1)2\(\ge\)0;Iy+3I\(\ge\)0
=>-(2x-1)2\(\le\)0;-Iy+3I\(\le\)0
=>11-(2x-1)2-Iy+3I\(\le\)11
Dấu = xảy ra khi: 2x-1=0 và y+3=0
x=1/2 và y=-3
Vậy GTNN của B=11 tại x=1/2 và y=-3
a, (x-3)(x-7)<0
=> +, x-3>0=>x>3=> x=4,5,6
x-7<0 x<7
+, x-3<0=>x<3=> x ko có g trị
x-7>0 x>7
d: =>x+5=0 và 3-y=0
=>x=-5 hoặc y=3
e: =>x-2=0 và y+1=0
=>x=2 và y=-1
Vì (2x - 1)2008 \(\ge\) 0 với mọi x
(y - \(\frac{2}{5}\))2008 \(\ge\) 0 với mọi y
|x + y - z| \(\ge\) 0 với mọi x; y ;z
=> (2x-1)2008+(y-\(\frac{2}{5}\))2008+|x+y-z| \(\ge\) 0 với mọi x; y ;z
Để (2x-1)2008+(y-\(\frac{2}{5}\))2008+|x+y-z| = 0
<=> (2x-1)2008 = 0 ; (y-\(\frac{2}{5}\))2008 = 0 ; |x+y-z| = 0
=> 2x -1 = 0 ; y - \(\frac{2}{5}\)= 0 ; x+ y - z = 0
=> x = \(\frac{1}{2}\) ; y = \(\frac{2}{5}\) ; z = x + y = \(\frac{1}{2}\) + \(\frac{2}{5}\) = \(\frac{9}{10}\)
KL:...
Cậu cho bài này khó đấy !