\(x,y\in N\)biết :  36 -y2 =8(x-2010)2

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2018

\(36-y^2=8\left(x-2010\right)^2+y^2=36\)

\(\text{Do: }y^2\ge0\Rightarrow\left(x-2010\right)^2\le\frac{36}{8}\)

Do đó: \(\left(x-2010\right)^2\in\left\{0;1;4\right\}\)

Với \(\left(x-2010\right)^2=0\Rightarrow x=2010\)

\(\Rightarrow y^2=36\text{ nen }y=6\)

Với \(\left(x-2010\right)^2=1\Rightarrow\orbr{\begin{cases}x=2010\\y^2=36-8=28\left(\text{loai}\right)\end{cases}}\)

Với \(\left(x-2010\right)^2=4\Rightarrow\orbr{\begin{cases}x=2012\\y^2=36-32=4\Rightarrow y=2\end{cases}}\)

Các cặp số thỏa mãn yêu cầu đề bài là: (2010; 6), (2010; 2).

22 tháng 2 2018

Ta có: 36-y2=8(x-2010)2. => y2=36-8(x-2010)2 

+)Nếu y=0 (

\(\Rightarrow y^2=0\Rightarrow36-8\left(x-2010\right)^2=0\Rightarrow8\left(x-2010\right)^2=36\)

\(\Rightarrow\left(x-2010\right)^2=4,5\)ko thỏa mãn vì )

+)Nếu y khác 0

\(\Rightarrow y^2>0\Rightarrow36-8\left(x-2010\right)^2>0\) 

\(\Rightarrow8\left(x-2010\right)^2>36\)

\(\Rightarrow\left(x-2010\right)^2>4,5\)

Mà (x-2010)2 là số chính phương \(\Rightarrow\left(x-2010\right)^2\in\left\{0;1;4\right\}\) 

Với \(\left(x-2010\right)^2=0\Rightarrow x=2010\Rightarrow36-y^2=8.0\Rightarrow y^2=36\) 

 \(\Rightarrow y=\sqrt{36}=6\Rightarrow x=2010;y=6\)(thỏa mãn)

Với \(\left(x-2010\right)^2=1\Rightarrow36-y^2=8\Rightarrow y^2=28\) (ko thỏa mãn)

Với \(\left(x-2010\right)^2=4\Rightarrow\)x-2010=2 hoặc x- 2010=-2

\(\Rightarrow\orbr{\begin{cases}x=2012\left(TM\right)\\x=2008\left(TM\right)\end{cases}}\)

\(\Rightarrow36-y^2=8.4=32\Rightarrow y^2=4=2^2\Rightarrow y=2\)(do y thuộc N) 

\(\Rightarrow\orbr{\begin{cases}x=2010\\y=6\end{cases};\orbr{\begin{cases}x=2012\\y=4\end{cases};\orbr{\begin{cases}2008\\y=2\end{cases}}}}\)

27 tháng 3 2017

bn nhấn vào đây nhé: Câu hỏi của Kudo shinichi - Toán lớp 7 | Học trực tuyến

29 tháng 11 2018

Ta có:

\(\frac{x}{x+1}=1-\frac{1}{x+1}\in Z\Rightarrow x+1\inƯ\left(1\right)\Rightarrow x+1\in\left\{-1;1\right\}\Rightarrow x\in\left\{-2;0\right\}\)

\(+,x=0;\Rightarrow\frac{x}{x+1}=0\left(tm\right);+,x=-2\Rightarrow\frac{x}{x+1}=\frac{-2}{-1}=2\left(tm\right)\)

Vậy: x E {0;2}

b,  \(\frac{a}{2010}=\frac{b}{2012}=\frac{c}{2014}\Rightarrow a=2010k;b=2012k;c=2014k\left(k\in Z\right)\)

\(\frac{\left(a-c\right)^2}{4}=\frac{\left(-4k\right)^2}{4}=\frac{16k^2}{4}=4k^2\)và: \(\left(a-b\right)\left(b-c\right)=\left(-2k\right)\left(-2k\right)=4k^2\)

\(\frac{\left(a-c\right)^2}{4}=\left(a-b\right)\left(b-c\right)\)\(\left(ĐPCM\right)\)

c, Ta có:

\(25-y^2=8.x^2\Rightarrow25-y^2⋮8\Rightarrow y^2:8\left(dư1\right)\left(y\le5\right)\Rightarrow y\in\left\{1;3;5\right\}\)

Ta lần lượt thử ta thấy:

\(25-y^2=8.x^2\left(tm\right)\Leftrightarrow y=5\Rightarrow x=0\)

Vậy: y=5;x=0

29 tháng 11 2018

Ko thanks mk à

4 tháng 4 2020

PT đã cho suy ra thành

\(\left(\frac{x^{2010}}{a^2+b^2+c^2+d^2}-\frac{x^{2010}}{a^2}\right)+\left(\frac{y^{2010}}{a^2+b^2+c^2+d^2}-\frac{y^{2010}}{b^2}\right)+\left(\frac{z^{2010}}{a^2+b^2+c^2+d^2}-\frac{z^{2010}}{c^2}\right)\)

\(+\left(\frac{t^{2010}}{a^2+b^2+c^2+d^2}-\frac{t^{2010}}{d^2}\right)=0\)

\(=>x^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\right)+\left(tương\right)Tựnha=0\)

Do

\(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\ne0\)

máy cái bạn tự suy ra cx thế

\(=>x^{2010}=y^{2010}=z^{2010}=t^{2010}=0=>x=y=z=t=0\)

ta có 

\(T=x^{2011}+y^{2011}+z^{2011}+t^{2011}=0+0+0+0=0\)

4 tháng 4 2020

Ta có:

\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)

<=> \(x^{2010}\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+y^{2010}\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\)

\(+z^{2010}\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+t^{2010}\left(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)=0\)(1)

Lại có: \(x^{2010};y^{2010};z^{2010};t^{2010}\ge0;\forall x,y,z,t\)

và với mọi a; b ; c ; d khác 0 có:

\(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\)

\(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\);

\(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\);

\(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\)

=> \(x^{2010}\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

\(y^{2010}\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

\(z^{2010}\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

\(t^{2010}\left(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

=> \(x^{2010}\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+y^{2010}\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\)

\(+z^{2010}\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+t^{2010}\left(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

Như vậy (1) xảy ra<=> \(x^{2010}=y^{2010}=z^{2010}=t^{2010}=0\)

<=> x = y = z = t = 0

Thay vào T ta có : T = 0

18 tháng 11 2018

Bạn mở lên "Câu hỏi của Nguyễn Văn Phương" đi

18 tháng 11 2018

\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

\(\left(x-7\right)^{x+1}.\left[1-\left(x-7\right)^{10}\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x-7=\pm1\end{cases}}}\)

vậy x=7, x=8 hay x=6

7 tháng 3 2016

vì 8(x-2009)^2>=0 suy ra 25-y^2>=0. Mà y^2>=0 suy ra 25-y^2<=25. Suy ra 0<=25-y^2<=25. suy ra 0<=8(x-2009)^2<=25

suy ra 0<=(x-2009)^2<=25/8 (cùng chia cho 8 cả 3 vế)

nên (x-2009)^2=0 ;1

- Nếu (x-2009)^2=0 suy ra x-2009=0 suy ra x=2009

nên 25-y^2=0 suy ra y^2=25 suy ra y=5(t/m)

- Nếu (x=2009)^2=1 suy ra x-2009=1 hoặc x-2009=-1

                             suy ra: x=2010 hoặc x=2008

nên 25-y^2=8 nhân 1 suy ra y^2=17(loại vì y thuộc N)

       Vậy ta tim đc 1 cặp  (x;y) là (2009;5)

         Nhớ tích đúng cho mình nhé.....! Cảm ơn

Ta có:8(x-2009)^2 chia hết cho 2 suy ra 8(x-2009)^2 là số chẵn mà 25-y^ 2=8(x-2009)^2 suy ra 25-y^2 là số chẵn mà 25 là số lẻ nên y^2 là số lẻ 

Mặt khác:8(x-2009)^2>0 nên 25-y^2>0 suy ra y^2 phải bé hơn hoặc bằng. 25 nên y^2 thuộc :1;4;9;16;25 mà theo cm trên thì y^2 lẻ suy ra y^2 thuộc:1;9;25

thay từng trường hợp y rồi tìm x

10 tháng 4 2018

Hỏi đáp Toán

4 tháng 4 2020

Câu hỏi của Lê Xuân Phú - Toán lớp 7 - Học toán với OnlineMath