Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\)
\(\Leftrightarrow x-y-z=2\left(\sqrt{yz}-\sqrt{3}\right)\)
Do x;y;z;2 đều là các số hữu tỉ mà \(\sqrt{yz}-\sqrt{3}\) vô tỉ
Nên đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x-y-z=0\\yz=3\end{matrix}\right.\)
\(\Leftrightarrow\left(x;y;z\right)=\left(4;3;1\right);\left(4;1;3\right)\)
hình như...
b) \(x+y+z+8=2\sqrt{x-3}+4\sqrt{y-3}+6\sqrt{z-3}\)
\(\Leftrightarrow x-3+y-3+z-3+17=2\sqrt{x-3}+4\sqrt{y-3}+6\sqrt{z-3}\)
\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)+3=0\)
\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-3}-3\right)^2+3=0\) (vô nghiệm, VT >/3)
Kl: ptvn
bài này tớ giải rồi mà
vào lúc : 000
ok minh giải chi tiết nhé.
Hiển nhiên hai vế dương
bình phương hai vế ta được
x+2căn3=y+z+2căn(yz) [hằng đẳng thức thôi]
x-y-z=2can(yz)-2can(3)
nhận xét: x,y,z tư nhiên do vậy vế trái là một số nguyên
vế phải cũng phải là một số nguyên => yz=3 để triệt tiêu số vô tỷ -2can(3)
ok !!!
Bình phương của 2 vế ta được
\(x+2\sqrt{3}=y+z+2\sqrt{yz}\)
Vì x,y,z đều tự nhiên nên phần vô tỷ và phần nguyên 2 vế phải bằng nhau hay
\(\hept{\begin{cases}x=y+z\\\sqrt{3}=\sqrt{yz}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=4\\y=1\\z=3\end{cases}}or\hept{\begin{cases}x=4\\y=3\\z=1\end{cases}}\)