Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.)x^2=y^2+2x+12
x^2=y^2+2y+1+11
x^2-(y^2+2y+1)=11
x^2-(y+1)^2=11
(x-y-1)(x+y+1)=11
suy ra x-y-1=11 và x+y+1=1 hoặc x-y-1=1 và x+y+1=11
từ đó tìm được x,y
b.)x^2+xy-2015x-2016y-2017=0
x^2+xy+x-2016x-2016y-2016-1=0
x(x+y+1)-2016(x+y+1)=1
(x+y+1)(x-2016)=1
=> x+y+1=1 và x-2016=1 hoặc x+y+1=-1 và x-2016=-1
từ đó tìm được x,y
Ta có : x2 + y2 + 6y + 8 = 0
x2 + ( y2 + 6y + 9 ) - 1 = 0
x2 + (y + 3)2 = 1 (1)
Vì x2 >= 0 với mọi x; (y + 3)2 >= 0 với mọi y nên từ (1) => x2 =< 1
Mà x2 >= 0; x2 thuộc N* ( vì x thuộc z)
=> x2 = 0 hoặc x2 = 1.
+ với x2 = 0 <=> x = 0 và (y+ 3)2 = 1
<=> y = -2 hoặc y = -4
+ với x2 = 1 <=> x = 1 hoặc x = -1
Khi đó (y+3)2 = 0 <=> y + 3 =0 <=> y = -3
Vậy (x;y) thuộc (0;-2) , (0;-4) , (1;-3) , (-1;-3).
\(x^2+xy-2015x-2016y-2017=0\)
\(\Rightarrow\left(x^2+xy+x\right)-\left(2016x-2016y-2016\right)=1\)
\(\Rightarrow x.\left(x+y+1\right)-2016.\left(x+y+1\right)=1\)
\(\Rightarrow\left(x-2016\right).\left(x+y+1\right)=1\)
Xét TH1: \(x-2016=1\) và \(x+y+1=1\)
\(\Rightarrow x=......;y=.......\)
Xét TH2: \(x-2016=-1\) và \(x+y+1=-1\)
\(\Rightarrow x=......;y=.......\)
Ta có : 3(2x - 1)2 \(\ge0\forall x\)
7(3y + 5)2 \(\ge0\forall x\)
Mà : 3(2x - 1)2 + 7(3y + 5)2 = 0
Nên : 3(2x - 1)2 = 7(3y + 5)2 = 0
\(\Leftrightarrow\hept{\begin{cases}3\left(2x-1\right)^2=0\\7\left(3y+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)^2=0\\\left(3y+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)=0\\\left(3y+1\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=1\\3y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{1}{3}\end{cases}}\)
bài 2 nhân p vs x+y+xy rồi t định áp dụng bđt (x+y+z)(1/x+1/y+1/z)>=9 nhưng vướng
.