Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(xy+x+2y=5\\ \Rightarrow y\left(x+2\right)+x+2=5+2\\ \Rightarrow\left(x+2\right)\left(y+1\right)=7\)
Ta xét bảng:
x+2 | 1 | 7 | -1 | -7 |
x | -1 | 5 | -3 | -9 |
y+1 | 7 | 1 | -7 | -1 |
y | 6 | 0 | -8 | -2 |
Vậy \(\left(x;y\right)\in\left\{\left(-1;6\right);\left(5;0\right);\left(-3;-8\right);\left(-9;-2\right)\right\}\)
b) \(xy-3x-y=0\\ \Rightarrow x\left(y-3\right)-y+3=3\\ \Rightarrow\left(y-3\right)\left(x-1\right)=3\)
Ta xét bảng:
x-1 | 1 | 3 | -1 | -3 |
x | 2 | 4 | 0 | -2 |
y-3 | 3 | 1 | -3 | -1 |
y | 6 | 4 | 0 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(2;6\right);\left(4;4\right);\left(0;0\right);\left(-2;2\right)\right\}\)
c) \(xy+2x+2y=-16\\ \Rightarrow x\left(y+2\right)+2y+4=-12\\ \Rightarrow\left(y+2\right)\left(x+2\right)=-12\)
Ta xét bảng:
x+2 | 1 | 2 | 3 | 4 | 6 | 12 | -1 | -2 | -3 | -4 | -6 | -12 |
x | -1 | 0 | 1 | 2 | 4 | 10 | -3 | -4 | -5 | -6 | -8 | -14 |
y+2 | -12 | -6 | -4 | -3 | -2 | -1 | 12 | 6 | 4 | 3 | 2 | 1 |
y | -14 | -8 | -6 | -5 | -4 | -3 | 10 | 4 | 2 | 1 | 0 | -1 |
Vậy \(\left(x;y\right)\in\left\{\left(-1;-14\right);\left(0;-8\right);\left(1;-6\right);\left(2;-5\right);\left(4;-4\right);\left(10;-3\right);\left(-3;10\right);\left(-4;4\right);\left(-5;2\right);\left(-6;1\right);\left(-8;0\right);\left(-14;-1\right)\right\}\)
xy+3x-2y=11
=>x(y+3)-2y-6=5
=>x(y+3)-(2y+6)=5
=>x(y+3)-2(y+3)=5
=>(x+2)(y+3)=5
Bạn kẻ bảng ra nha
\(xy+3x-2y=11\)
\(\Leftrightarrow x\left(y+3\right)-2\left(y+3\right)=5\)
\(\Leftrightarrow\left(x-2\right)\left(y+3\right)=5\)
\(\Rightarrow\left(x-2\right);\left(y+3\right)\)là các ước nguyên của 5
\(Th1:x-2=1\Leftrightarrow x=3\)
\(y+3=5\Leftrightarrow y=3\)
\(Th2:x-2=-1\Leftrightarrow x=-1\)
\(y+3=-5\Leftrightarrow y=-8\)
\(Th3:x-2=5\Leftrightarrow x=7\)
\(y+3=1\Leftrightarrow y=1\)
\(Th4:x-2=-5\Leftrightarrow x=-3\)
\(y+3=-1\Leftrightarrow y=-4\)
Vậy: \(\left(x;y\right)\in\left\{3,2\right\};\left\{1,-8\right\};\left\{7;-2\right\};\left\{-3;-4\right\}\)
a) x+xy+y=9
=> x(1+y) +y+1=10
=> (x+1)(y+1)=10
Nếu \(x\ge y\)thì \(x+1\ge y+1\)
Từ đó,ta có bảng
x+1 | 10 | 5 | -1 | -2 |
y+1 | 1 | 2 | -10 | -5 |
x | 9 | 4 | -2 | -3 |
y | 0 | 1 | -11 | -6 |
Vậy ( x;y) lần lượt là : (9;0),(0;9),(4;1),(1;4),(-2;-11),(-11;-2),(-3;-6),(-6;-3)
a)\(x+xy+y=9\)
\(\Rightarrow x\left(1+y\right)+y+1=10\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)=10\)
Nếu \(x\ge y\)thì \(x+1\ge y+1\)
Từ đó, ta có bảng như sau:
x+1 | 10 | 5 | -1 | -2 |
y+1 | 1 | 2 | -10 | -5 |
x | 9 | 4 | -2 | -3 |
y | 0 | 1 | -11 | -6 |
Vậy x; y lần lượt là: (9; 0); (0; 9); (4; 1); (1; 4); (-2; -11); (-11; -2); (-3; -6); (-6; -3).
a) xy+ 3x - 7y = 21
x.(y+3) - 7y = 21
x.(y+3) - 7y- 21 = 0
x.(y+3)- (7y+21) = 0
x.(y+3) - 7.(y+3) = 0
(y+3). (x-7) = 0
có 2 trường hợp
Nếu x-7 = 0 thì x=7 và y thuộc Z
Nếu y+3=0 thì x=-3 và x thuộc Z
b) Câu này tương tự câu trên
a) \(\left(x-30\right)\left(2y+1\right)=7=1.7=\left(-1.\right)\left(-7\right)\)
Ta xét bảng:
x-30 | 1 | 7 | -1 | -7 |
2y+1 | 7 | 1 | -7 | -1 |
x | 31 | 37 | 29 | 23 |
y | 3 | 0 | -4 | -1 |
c) \(xy+3x-7y=21\Leftrightarrow x\left(y+3\right)-7\left(y+3\right)=0\Leftrightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\y=3\end{cases}}\).
b), d) bạn làm tương tự.
`xy-3x-2y=1`
`=>x(y-3)-2y=1`
`=>x(y-3)-2y+6=1+6`
`=>x(y-3)-2(y-3)=7`
`=>(x-2)(y-3)=7`
Mà : `7=1.7=(-1).(-7)`
Lập bảng giá trị :
\(\begin{matrix}x-2&1&7&-1&-7\\y-3&7&1&-7&-1\\x&3&9&1&-5\\y&10&4&-4&2\end{matrix}\)
Vậy : \(\left(x;y\right)=\left(3;10\right);\left(9;4\right);\left(1;-4\right);\left(-5;2\right)\)