Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1)\)
\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)
\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)
\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận )
TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại )
Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)
\(2)\)
\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)
\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)
\(\Rightarrow\)\(VT\ge VP\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại )
TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận )
\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)
Vậy \(1\le x\le5\) và \(y=-1\)
a) vì x,y \(\in\)Z \(\Rightarrow\)x + y \(\in\)Z
\(\Rightarrow\)[ x + y ] = x + y ( 1 )
[ x ] = x ; [ y ] = y
\(\Rightarrow\)[ x ] + [ y ] = x + y ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)[ x + y ] = [ x ] + [ y ]
b) Ta có : y = [ y ] + { y } trong đó [ y ] \(\in\)Z ; 0 \(\le\){ y } < 1
\(\Rightarrow\)[ x + y ] = [ x + [ y ] + { y } ] ( 1 )
x \(\in\)Z ; [ y ] \(\in\)Z ; x + [ y ] \(\in\)Z
Từ ( 1 ) \(\Rightarrow\)[ x + y ] = [ x + [ y ] ] = x + [ y ]
Từ \(\left(x+1\right)^6+\left(y-1\right)^4=-z^2\)
\(\Rightarrow\left(x+1\right)^6+\left(y-1\right)^4+z^2=0\)
Thấy: \(\left\{{}\begin{matrix}\left(x+1\right)^6\ge0\forall x\\\left(y-1\right)^4\ge0\forall y\\z^2\ge0\forall z\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^6+\left(y-1\right)^4+z^2\ge0\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\left(x+1\right)^6=0\\\left(y-1\right)^4=0\\z^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\\z=0\end{matrix}\right.\)
Khi đó \(N=2018\cdot x^{2016}\cdot y^{2017}-\left(z-1\right)^{2018}\)
\(=2018\cdot\left(-1\right)^{2016}\cdot1^{2017}-\left(0-1\right)^{2018}\)
\(=2018-\left(-1\right)^{2018}=2018-1=2017\)
thanks bạn nhiều nha Ace Legona. Mk cũng đang cần bài này
hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi
Lí luận chung cho cả 3 câu :
Vì GTTĐ luôn lớn hơn hoặc bằng 0
a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)
b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)
c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)
\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)
\(\Rightarrow2\left(x+y+z\right)=0,2\)
\(\Rightarrow x+y+z=0,1\)
Từ đây tìm đc x, y, z
a) Sai đề
b) \(25-y^2=8\left(x-2016\right)^2\)
\(\Leftrightarrow5^2-y^2=8\left(x-2016\right)^2\)
\(\Leftrightarrow\left(5^2-y^2\right)-8\left(x-2016\right)^2=0\)
Mà \(8\left(x-2016\right)^2\ge0\Rightarrow5^2-y^2\ge8\left(x-2016\right)^2\ge0\)
\(\Rightarrow\left(5^2-y^2\right)-8\left(x-2016\right)^2\ge0\)
Do theo đề bài thì vế phải bằng 0 nên: \(\hept{\begin{cases}5^2-y^2=0\\8\left(x-2016\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=5\\x=2016\end{cases}}\)
a: \(\Leftrightarrow x\cdot\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{9}=\dfrac{11}{18}\)
hay \(x=\dfrac{11}{18}:\dfrac{1}{4}=\dfrac{11}{18}\cdot4=\dfrac{44}{18}=\dfrac{22}{9}\)
d: =>x+1;x-2 khác dấu
Trường hợp 1: \(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Leftrightarrow-1< x< 2\)
Trường hợp 2: \(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Leftrightarrow2< x< -1\left(loại\right)\)
e: =>x-2>0 hoặc x+2/3<0
=>x>2 hoặc x<-2/3