Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(5=3xy+x+y\ge3xy+2\sqrt{xy}\)
\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+5\right)\le0\Rightarrow xy\le1\)
\(P=\dfrac{\left(x+1\right)\left(x^2+1\right)+\left(y+1\right)\left(y^2+1\right)}{\left(x^2+1\right)\left(y^2+1\right)}-\sqrt{9-5xy}\)
\(P=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+x+y+2}{x^2y^2+\left(x+y\right)^2-2xy+1}-\sqrt{9-5xy}\)
Đặt \(xy=a\Rightarrow0< a\le1\)
\(P=\dfrac{\left(5-3a\right)^3-3a\left(5-3a\right)+\left(5-3a\right)^2-2a+5-3a+2}{a^2+\left(5-3a\right)^2-2a+1}-\sqrt{9-5a}\)
\(P=\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{2}.2\sqrt{9-5a}\)
\(P\ge\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{4}\left(4+9-5a\right)\)
\(P\ge\dfrac{-29a^3+161a^2-277a+145}{4\left(5a^2-16a+13\right)}=\dfrac{\left(1-a\right)\left(29a^2-132a+145\right)}{4\left(5a^2-16a+13\right)}\)
\(P\ge\dfrac{\left(1-a\right)\left[29a^2+132\left(1-a\right)+13\right]}{4\left(5a^2-16a+13\right)}\ge0\)
\(P_{min}=0\) khi \(a=1\) hay \(x=y=1\)
Hai phân thức của P rất khó làm gọn bằng AM-GM hoặc Cauchy-Schwarz (nó hơi chặt)
2.
Đặt \(A=9^n+62\)
Do \(9^n⋮3\) với mọi \(n\in Z^+\) và 62 ko chia hết cho 3 nên \(A⋮̸3\)
Mặt khác tích của k số lẻ liên tiếp sẽ luôn chia hết cho 3 nếu \(k\ge3\)
\(\Rightarrow\) Bài toán thỏa mãn khi và chỉ khi \(k=2\)
Do tích của 2 số lẻ liên tiếp đều không chia hết cho 3, gọi 2 số đó lần lượt là \(6m-1\) và \(6m+1\)
\(\Leftrightarrow\left(6m-1\right)\left(6m+1\right)=9^n+62\)
\(\Leftrightarrow36m^2=9^n+63\)
\(\Leftrightarrow4m^2=9^{n-1}+7\)
\(\Leftrightarrow\left(2m\right)^2-\left(3^{n-1}\right)^2=7\)
\(\Leftrightarrow\left(2m-3^{n-1}\right)\left(2m+3^{n-1}\right)=7\)
Pt ước số cơ bản, bạn tự giải tiếp
2x + 1 = y2
=> y2-1 = 2x => (y+1)(y-1)=2x
x, y \(\in\)N => (y+1)=2m và y-1=2n (m>n & x=m+n)
=> (y+1) - (y-1) = 2m-2n
=> 2 = 2n(2(m-n)-1).
2(m-n)-1 là số lẻ lại là ước của 2 => 2(m-n)-1 = 1.
=> 2n=2 =>n=1. => 2(m-1) - 1 = 1 =>2(m-1) =2 =>m=2.
Vậy x=m+n=3 và y=2n +1 = 3.
(2x+ 1)(y + 2) = 10 = 1.10 = 5.2
Vì 2x+ 1 lẻ => 2x + 1 = 1 hoặc 2x + 1 = 5
TH1: 2x + 1= 1 => x = 0
y + 2= 10 => y = 8
TH2: 2x+ 1 = 5 => x = 2
y + 2= 2 => y = 0
Vậy (x , y) \(\in\) { (0 ; 8) ; (2 ; 0 ) }
(2x+1)(y+2)=10=1.10=5.2
Vì 2x+1 lẻ suy ra 2x+1=1 hay 2x+1=5
th1:2x+1=1 suy ra x=0
y+2=10 suy ra y=8
th2:2x+1=5 suy ra x=2
y+2=2 suy ra y=0
<=>x2=y2+y+1
ta có:y2<y2+y+1<(=)(y+1)2
=>y2<x2<(=)(y+1)2
=>x2=y2+2y+1
=>y=0=>x=1