Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
(y+2)x2019-y(y+2)=1
=> (y+2)[(y+2)x2018-y]=1
đến đây bạn lập bảng ra để tính nhé
Ta thấy $x^2+y^2+z^2\geq 0$ với mọi $x,y,z$
Do đó $x^2+y^2+z^2=-14$ là vô lý
PT vô nghiệm.
\(x^2+y^2+z^2=4x-2y+6=-14\)
⇔ \(x^2-4x+4+y^2+2y+1+z^2-6z+9=0\)
⇔ \(\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0\)
⇔ \(\left\{{}\begin{matrix}\left(x-2\right)^2\\\left(y+1\right)^2\\\left(z-3\right)^2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x=2\\y=-1\\z=3\end{matrix}\right.\)
Theo bđt Cauchy schwarz dạng Engel
\(P\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{1+1}=\frac{\left[2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\right]^2}{2}\)
Ta có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(bđt phụ)
\(\Rightarrow P\ge\frac{\left[2.1+4\right]^2}{2}=\frac{36}{2}=18\)
Dấu ''='' xảy ra khi \(x=y=\frac{1}{2}\)
\(P=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+\dfrac{1}{x}+2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+2y+\dfrac{4}{x+y}\right)^2=18\)
\(P_{min}=18\) khi \(x=y=\dfrac{1}{2}\)
Có : $x+2y=2$
$\to x = 2-2y$
Khi đó : $x^2+y^2=1$
$\to (2-2y)^2+y^2=1$
$\to 4+4y^2-8y+y^2=1$
$\to 5y^2-8y+3=0$
$\to (y-1).(5y-3)=0$
$\to$ \(\left[{}\begin{matrix}y=1\\y=\dfrac{3}{5}\end{matrix}\right.\)
Khi \(y=1\Rightarrow x=0\)
Khi \(y=\dfrac{3}{5}\Rightarrow x=\dfrac{4}{5}\)