Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(pt\Leftrightarrow9y^2-12xy+4x^2+x^2+8-48y+24x+72=0\)
<=> \(\left(3y-2x\right)^2-16\left(3y-2x\right)+64+x^2-8x+16=0\)
<=> \(\left(3y-2x-8\right)^2+\left(x-4\right)^2=0\)
Để pt xảy ra khi và chỉ khi
x - 4 = 0
3y - 2x - 8 = 0
=> x = 4 và y = 16/3 ( loại )
Vậy không có gt x ; y nguyên tm
\(5x^2+9y^2-12xy+8=24\left(2y-x-3\right)\)
\(\Leftrightarrow\left(2x-3y\right)^2+x^2+8-24\left(2y-x-3\right)=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+x^2-48y+24x+80=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+\left(32x-48y\right)+64+x^2-8x+16=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+2.\left(2x-3y\right).8+8^2+\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(2x-3y+8\right)^2+\left(x-4\right)^2=0\)
Đến đây dễ rồi bạn tự làm tiếp nhé
làm tiếp bài của bạn Pham Trung Thanh
Ta thấy : \(\left(2x-3y+8\right)^2\ge0\)
\(\left(y-4\right)^2\ge0\)
Cộng theo vế ta được : \(\left(2x-3y+8\right)^2+\left(y-4\right)^2\ge0\)
Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}2x-3y+8=0\\x-4=0\end{cases}< =>\hept{\begin{cases}8-3y+8=0\\x=4\end{cases}}}\)
\(< =>\hept{\begin{cases}x=4\\16=3y< =>y=\frac{16}{3}\left(ktm\right)\end{cases}}\)
Vậy pt vô nghiệm nguyên
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
8. \(x^2-5x+14-4\sqrt{x+1}=0\) (ĐK: x > = -1).
\(\Leftrightarrow\) \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)
Với mọi x thực ta luôn có: \(\left(\sqrt{x+1}-2\right)^2\ge0\) và \(\left(x-3\right)^2\ge0\)
Suy ra \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\) x = 3 (Nhận)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
2) Do \(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}=2\\\)\(\Rightarrow\dfrac{1}{a+1}=2-\left(\dfrac{1}{b+1}+\dfrac{1}{c+1}\right)\)
=\(\dfrac{b}{b+1}+\dfrac{c}{c+1}\)
Áp dụng BĐT AM-GM ta có
\(\dfrac{1}{a+1}=\dfrac{b}{b+1}+\dfrac{c}{c+1}\) \(\ge\)\(2\sqrt{\dfrac{bc}{\left(b+1\right)\left(c+1\right)}}\)
Tương tự ta được
\(\dfrac{1}{b+1}\ge2\sqrt{\dfrac{ca}{\left(c+1\right)\left(a+1\right)}}\)
\(\dfrac{1}{c+1}\ge2\sqrt{\dfrac{ab}{\left(a+1\right)\left(b+1\right)}}\)
Nhân vế theo vế của 3 BĐT cùng chiều ta được
\(\dfrac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)\(\ge\dfrac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)
\(\Rightarrow abc\le\dfrac{1}{8}\)
Đẳng thức xảy ra\(\Leftrightarrow a=b=c=\dfrac{1}{2}\)
(x+căn bậc 2 của (2015+x2))(y+căn bậc 2 của(2015+y2)=2015
<=>(x+căn bậc 2 của (2015+x2))(x-căn bậc 2 của (2015+x2))(y+căn bậc 2 của(2015+y2)=2015(x-căn bậc 2 của(2015+x2)
<=>x=y+căn bậc 2 của(2015+x2)-căn bậc 2 của (2015+y2) (1)
Tương tự: y=x+ căn bậc 2 của (2015+y2)-căn bậc 2 của (2015+x2) (2)
Cộng 2 vế của (1) và (2)
=> x+y=0 <=> y=-x
Thay vào pt ta được:
3x2+8x2+12x2=23 <=> 23x2
<=>x=1 hoặc x=-1
<=>y=-1 hoặc y=1
mk ko làm được
xin lỗi