\(3^{2x+1}.7^y=9.21^x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2018

a) => 5x.52 + 5x.53=750

=> 5x . (52+53) =750

=> 5x . 150 =750

=> 5x = 750 : 150

=> 5x = 5

=> x =1

Vậy x = 1

b) => 32x+1 . 7y = 32 . (3.7)x

=> 32x+1 . 7y = 3x+2 . 7x

=> \(\dfrac{3^{2x+1}}{3^{x+2}}\) =\(\dfrac{7^x}{7^y}\)

=> 3(2x+1)-(x+2) = 7x-y

=> 3x-1 = 7x-y

=>\(\left\{{}\begin{matrix}x-1=0\\x-y=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1\\x=y\end{matrix}\right.\)

=>x=y=1

Vậy x=y=1

c)

=>\(\dfrac{3^{3x}}{3^{2x-y}}\) =35 và =>\(\dfrac{5^{2x}}{5^{x+y}}\) =53

=> 3(3x)-(2x-y) =35 =>5(2x)-(x+y) =53

=> 33x-2x+y =35 => 52x-x-y =53

=> 3x+y =35 => 5x-y =53

=> x+y =5 (1) => x-y =3 (2)

Từ (1) và (2) có :

+x = (5+3):2 =4

+y = (5-3):2 =1

Vậy x=4 ; y=1

- Nếu làm đúng cho mình xin cái tick ! Tks

31 tháng 10 2018

Cảm ơn bạn ^^

25 tháng 10 2018

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có:

 \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

=>\(6x=12\)

\(x=12:6\)

\(x=2\)

Thay x = 2 vào \(\frac{2x+1}{5}=\frac{3y-2}{7}\), ta có:

\(\frac{2.2+1}{5}=\frac{3y-2}{7}\)

<=>\(\frac{5}{5}=\frac{3y-2}{7}\)

<=>\(\frac{3y-2}{7}=1\)

<=>\(3y-2=7\)

<=>\(3y=7+2\)

<=>\(3y=9\)

<=>\(y=9:3\)

<=>\(y=3\)

Vậy x =2 ; y=3

20 tháng 12 2016

a) Giải:
Ta có: \(\frac{x}{y}=-2\Rightarrow\frac{x}{-2}=\frac{y}{1}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{-2}=\frac{y}{1}=\frac{x+y}{-2+1}=\frac{12}{-1}=-12\)

+) \(\frac{x}{-2}=-12\Rightarrow x=24\)

+) \(\frac{y}{1}=-12\Rightarrow y=-12\)

Vậy cặp số \(\left(x;y\right)\)\(\left(24;-12\right)\)

b) Giải:

Ta có: \(\frac{x}{y}=\frac{7}{10}\Rightarrow\frac{x}{7}=\frac{y}{10}\)

Đặt \(\frac{x}{7}=\frac{y}{10}=k\)

\(\Rightarrow x=7k;y=10k\)

\(xy=36\)

\(7k10k=36\)

\(\Rightarrow70k^2=36\)

\(\Rightarrow k^2=\frac{18}{35}\) ( sai đề )

c) Giải:

Ta có: \(\frac{2x}{3y}=\frac{-1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}\Rightarrow\frac{-2x}{1}=\frac{3y}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{-2x}{1}=\frac{3y}{3}=\frac{-2x+3y}{1+3}=\frac{7}{4}\)

+) \(\frac{-2x}{1}=\frac{7}{4}\Rightarrow x=\frac{-7}{8}\)

+) \(\frac{3y}{3}=\frac{7}{4}\Rightarrow y=\frac{7}{4}\)

Vậy cặp số \(\left(x;y\right)\)\(\left(\frac{-7}{8};\frac{7}{4}\right)\)

10 tháng 11 2018

\(6,8-\left(4,9-x\right)=2x-\frac{3}{4}\)

\(6,8-4,9+x=2x-\frac{3}{4}\)

\(1,9+x=2x-\frac{3}{4}\)

\(x-2x=-\frac{3}{4}-1,9\)

\(-x=-\frac{53}{20}\)

\(x=\frac{53}{20}\)

=.= hok tốt!!

30 tháng 11 2018

áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}=\frac{x+y+z}{2\left(x+y+z\right)}.\)

Nếu x+y+z=0 ta có \(\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)

khi đó \(M=\left(\frac{x+y}{y}\right)\left(\frac{y+z}{z}\right)\left(\frac{x+z}{x}\right)=\frac{\left(-z\right)\left(-x\right)\left(-y\right)}{xyz}=-1.\)

nếu \(x+y+z\ne0\)=>\(\hept{\begin{cases}y+z=2x\\x+z=2y\\x+y=2z\end{cases}}\)

ta có \(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}.\)

suy ra \(M=\left(\frac{x+y}{y}\right)\left(\frac{y+z}{z}\right)\left(\frac{x+z}{x}\right)=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{xyz}=\)

\(\frac{\left(2x\right)\left(2y\right)\left(2z\right)}{xyz}=8\)

vậy M=8 hoặc M=-1

15 tháng 7 2017

\(\dfrac{x-2}{4}=\dfrac{y+1}{5}=\dfrac{z+3}{7}\)

\(\Rightarrow\dfrac{2\left(x-2\right)}{8}=\dfrac{y+1}{5}=\dfrac{2\left(z+3\right)}{14}\)

\(\Rightarrow\dfrac{2x-4}{8}=\dfrac{y+1}{5}=\dfrac{2z+6}{14}\)

Dựa vào tính chất dãy tỉ số bằng nhau ta có:

\(=\dfrac{2x-4+y+1-2z-6}{8+5-14}\)

\(=\dfrac{2x+y-2z-9}{-1}\)

\(=\dfrac{7-9}{-1}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-2}{4}=2\Rightarrow x-2=8\Rightarrow x=10\\\dfrac{y+1}{5}=2\Rightarrow y+1=10\Rightarrow y=9\\\dfrac{z+3}{7}=2\Rightarrow z+3=14\Rightarrow z=11\end{matrix}\right.\)