Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
32x+1.7y=9.21x
<=> 32x+1.7y=32.3x.7x
<=> 32x+1.7y=3x+2.7x
<=> \(\frac{3^{2x+1}}{3^{x+2}}=\frac{7^x}{7^y}\)
<=> 3x-1=7x-y
<=> \(\hept{\begin{cases}x-1=0\\x-y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
Vậy...( Tự KL nha)
May cho mik là mik đang ôn thi, hôm qua hôm kia vừa lm bài này ý, lúc dầu ko ra, xem đáp án đề, xong vẫn ko hỉu, nhờ cô cj gái giảng, đây mik chỉ lm tắt nhé, c vô Câu hỏi tương tự sẽ có rõ hơn nha!
\(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}\le0\)
Vì \(\left(2x-y+7\right)^{2012}\ge0\forall x;y\)và \(\left|x-3\right|\ge0\Leftrightarrow\left|x-3\right|^{2013}\ge0\forall x\)
\(\Rightarrow\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}=0\)
Dấy "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y+7=0\\x-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=13\\x=3\end{cases}}}\)
Vậy....
Từ \(0\le x\le y\le1\) và \(2x+y\le2\Rightarrow2x^2+xy\le2x\)(nhân cả 2 vế với \(x\ge0\))
\(\left(y-x\right)y\le y-x\)(nhân cả 2 vế của \(0\le y\le1\)với \(y-x\ge0\)(do \(x\le y\))
Cộng từng vế ta có :
\(2x^2+xy+\left(y-x\right)y\le2x+y-x\)
\(\Leftrightarrow2x^2+y^2\le x+y\)
\(\Leftrightarrow\left(2x^2+y^2\right)^2\le\left(x+y\right)^2\)
Mặt khác \(\left(x+y\right)^2=\left(\frac{1}{\sqrt{2}}.\sqrt{2}x+1.y\right)^2\le\left(\frac{1}{2}+1\right)\left(2x^2+y^2\right)\)(bất đẳng thức Bunhiacopxki)
\(\Rightarrow\left(2x^2+y^2\right)^2\le\frac{3}{2}\left(2x^2+y^2\right).\)
\(\Leftrightarrow2x^2+y^2\le\frac{3}{2}.\)(đpcm)
Chúc học tốt