K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

\(x\left(\frac{1}{2}+\frac{1}{y}\right)=\frac{10}{y}+\frac{3}{2}\)
\(\Leftrightarrow x=\frac{\frac{10}{y}+\frac{3}{2}}{\frac{y+2}{2y}}\)
\(\Leftrightarrow x=\frac{20+3y}{y+2}\)
\(\Leftrightarrow x=\frac{3\left(y+2\right)+14}{y+2}\)
\(\Leftrightarrow x=3+\frac{14}{y+2}\)
Để x nguyên thì \(y\inƯ\left(14\right)\)
Tiếp tự làm nhé

1 tháng 2 2018

a) Ta có : \(x+y+xy=0\Rightarrow x+xy+y+1=1\)

\(\Rightarrow x\left(y+1\right)+\left(y+1\right)=1\Rightarrow\left(x+1\right)\left(y+1\right)=1\)

Vậy thì x + 1 và y + 1 phải là ước của 1.

Ta có bảng: 

x + 11-1
y + 11-1
x0-2
y0-2

Vậy ta tìm được các cặp (x;y) = (0 ; 0) và (-2 ; -2).

b) 

Ta có : \(x-y-xy=0\Rightarrow x-xy+1-y=1\)

\(\Rightarrow x\left(1-y\right)+\left(1-y\right)=1\Rightarrow\left(x+1\right)\left(1-y\right)=1\)

Vậy thì x + 1 và 1 - y phải là ước của 1.

Ta có bảng:

x + 11-1
1 - y1-1
x0-2
y01

Vậy ta tìm được các cặp (x;y) thỏa mãn là (0;0) và (-2;1)

12 tháng 3 2022

=-1+3y/ -3+2y

12 tháng 3 2022

ghi rõ các bước ra cho mik nhé

4 tháng 1

có 2xy +x +y = 7

(2xy + x)+y = 7

x. (2+y)+1.(2+y)=9

(2+y) . (x+1) = 9

Mà x;y E Z =>2+y ; x+1 E Z

                  =>2+y ; x+1 E ư (9)={1 ; -1 ; 3 ; -3 ; 9 ; -9}

BGT

x+1 1 -1 3 -3 1 -1 9 -9 3 -3
x 0 -2 2 -4 0 -2 8 -10 2 -4
2+y 3 -3 1 -1 9 -9 1 -1 9 -9
y 1 -5 -1 -3 7 -11 -1 -3 7 -11

vậy (x;y)=(0;1) ; (-2;-5) ; (2;-1) ; (-4;-3) ; (0;7) ; (-2;-11) ; (8;-1) ; (-10;-3) ; (2;7) ; (-4;-11)

mik là ng trả lời đầu tiên nên cũng ko chắc lắm nhé bn :>>

 

 

2xy + x + y = 7

x(2y + 1) + y = 7

2.[x(2y +1) + y ] = 2.7

2x(2y + 1) + 2y = 14

2x(2y+1) + 2y + 1 = 14 +1

2x(2y+1) + (2y +1) = 15

(2y+1).(2x+1)   = 15

Vì x, y thuộc Z nên 2x+1 và 2y+1 là ước của 15

*(mình làm đến đây bạn tự kẻ bảng nhé)

4 tháng 5 2023

Gợi ý:
\(2xy+14x+y=33\)
\(\Rightarrow2x\left(y+7\right)+y+7=33+7\)
\(\Rightarrow\left(2x+1\right)\left(y+7\right)=40\)
\(\Rightarrow\left(2x+1;y+7\right)\inƯ\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)
Đến đây thì bạn làm tiếp nhé!