Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~
3xy+x+15y-44=0
\(\Leftrightarrow x\left(3y+1\right)+5\left(3y+1\right)=49\)
\(\Leftrightarrow\left(x+5\right)\left(3y+1\right)=49\)
Vì x,y dương nên
\(3y+1\) thuộc ước dương lớn hơn 1 của 49 ( do 3y + 1 > 3 )
\(\Rightarrow3y+1\in\left\{7;49\right\}\)
- Nếu \(3y+1=7\)\(\Rightarrow3y=6\Rightarrow y=2\)\(\Rightarrow x+5=7\Rightarrow x=2\)(thỏa mãn)
- Nếu \(3y+1=49\Rightarrow3y=48\Rightarrow y=\frac{48}{3}\left(loai\right)\)
Vậy....
Viết được bao nhiêu chữ số có 3 chữ số mà mỗi số chỉ có duy nhất 1 chữ số 4?
mình k'o hiểu lắm . Nếu mình thì mình đã giúp bạn rồi .Cho mình xin lỗi
a) \(\left(x+y+1\right)^3=x^3+y^3+7\)
\(\Leftrightarrow\left(x+y\right)^3+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)
\(\Leftrightarrow3\left(x+y\right)\left(x+y+xy+1\right)=6\)
\(\Leftrightarrow\left(x+y\right)\left[x\left(1+y\right)+1+y\right]=2\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(x+y\right)=2\)
\(\Rightarrow x+1,y+1,x+y\) là các ước của 2.
Ta thấy 6 có 2 dạng phân tích thành tích 3 số nguyên là \(\left(2;1;1\right)\) và\(\left(2;-1;-1\right)\).
- Xét trường hợp \(\left(2;1;1\right)\). Ta có 3 trường hợp nhỏ:
\(\left\{{}\begin{matrix}x+1=2\\y+1=1\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=2\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=1\\x+y=2\end{matrix}\right.\)
Giải ra ta có \(\left(x,y\right)=\left(1;0\right),\left(0;1\right)\).
- Xét trường hợp \(\left(2;-1;-1\right)\). Ta có 3 trường hợp nhỏ:
\(\left\{{}\begin{matrix}x+1=2\\y+1=-1\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=2\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=1\\x+y=2\end{matrix}\right.\).
Giải ra ta có: \(\left(x;y\right)=\left(1;-2\right),\left(-2;1\right)\).
Vậy \(\left(x;y\right)=\left(0;1\right),\left(1;0\right),\left(1;-2\right),\left(-2;1\right)\)
b) \(y^2+2xy-8x^2-5x=2\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(9x^2+5x\right)=2\)
\(\Leftrightarrow\left(x+y\right)^2-9\left(x^2+\dfrac{5}{9}x+\dfrac{25}{324}\right)+\dfrac{25}{36}=2\)
\(\Leftrightarrow\left(x+y\right)^2-9\left(x+\dfrac{5}{18}\right)^2=\dfrac{47}{36}\)
\(\Leftrightarrow6^2.\left(x+y\right)^2-3^2.6^2\left(x+\dfrac{5}{18}\right)^2=47\)
\(\Leftrightarrow\left(6x+6y\right)^2-\left(18x+5\right)^2=47\)
\(\Leftrightarrow\left(6x+6y-18x-5\right)\left(6x+6y+18x+5\right)=47\)
\(\Leftrightarrow\left(6y-12x-5\right)\left(24x+6y+5\right)=47\)
\(\Rightarrow\)6y-12x-5 và 24x+6y+5 là các ước của 47.
Lập bảng:
6y-12x-5 | 1 | 47 | -1 | -47 |
24x+6y+5 | 47 | 1 | -47 | -1 |
x | 1 | \(\dfrac{-14}{9}\left(l\right)\) | \(\dfrac{-14}{9}\left(l\right)\) | 1 |
y | 3 | \(\dfrac{50}{9}\left(l\right)\) | \(-\dfrac{22}{9}\left(l\right)\) | -5 |
Vậy pt đã cho có 2 nghiệm (x;y) nguyên là (1;3) và (1;-5)
Câu 2:
5x+7y=112
=>5x=112-7y
=>\(x=\dfrac{112-7y}{5}\)
=>\(\left(x,y\right)\in\left\{\left(1;15\right);\left(7;11\right);\left(14;6\right);\left(21;1\right)\right\}\)
Câu 1:
Đây là dạng toán nâng cao chuyên đề tìm nghiệm nguyên, cấu trúc thi chuyên thi học sinh giỏi. Hôm nay olm.vn sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp tìm điều kiện của biến để biểu thức là một số nguyên như sau:
Bước 1: Đưa hết các hạng tử chứa cùng một ẩn về một vế của phương trình.
Bước 2: Tìm ẩn này thông qua ẩn kia bằng phương pháp thế.
Bước 3: Tìm điều của ẩn để phân thức đại số đã tìm được ở bước 2 là một số nguyên.
Bước 4: Kết luận:
Giải:
\(x^3\) + 3\(x\) = \(x^2\)y + 2y + 5 (\(x;y\in N\))
\(x^3\) + 3\(x\) - 5 = \(x^2\)y + 2y
y.(\(x^2\) + 2) = \(x^3\) + 3\(x\) - 5
y = \(\dfrac{x^3+3x-5}{x^2+2}\)
y = \(\dfrac{x^3+2x+x-5}{x^2+2}\)
y = \(\dfrac{x\left(x^2+2\right)+x-5}{x^2+2}\)
y = \(x\) + \(\dfrac{x-5}{x^2+2}\)
y \(\in\) z ⇔ \(x\) - 5 ⋮ \(x^2\) + 2 (1)
\(x\).(\(x-5\)) ⋮ \(x^2\) + 2
\(x^2\) - 5\(x\) ⋮ \(x^2\) + 2
\(x^2\) + 2 - 5\(x\) - 2 ⋮ \(x^2\) + 2
5\(x\) + 2 ⋮ \(x^2\) + 2
5(\(x\) - 5) + 27 ⋮ \(x^2\) + 2 (2)
Kết hợp (1) và (2) ta có: 27 ⋮ \(x^2\) + 2
\(x^2\) + 2 \(\in\) Ư(27) = {1; 3; 9; 27}
\(x^2\) \(\in\) {-1; 1; 7; 25}
Vì \(x\) \(\in\) Z nên \(x^2\in\) {1; 25}
\(x\) \(\in\) { \(\pm\)1; \(\pm5\)}
Lập bảng ta có:
\(x\) | - 5 | -1 | 1 | 5 |
y = \(x+\dfrac{x-5}{x^2+2}\) | - \(\dfrac{145}{27}\) | -3 | -\(\dfrac{1}{3}\) | 5 |
\(x;y\in\) Z | Loại | loại |
Vậy các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-1; -3); (5; 5)
a/ \(5x-2y=23\)
\(\Leftrightarrow y=\frac{5x-23}{2}=\frac{6x-12-\left(x+11\right)}{2}=x-6-\frac{x+11}{2}\)
Vì x, y nguyên nên \(\frac{x+11}{2}=t\in Z\)
\(\Rightarrow\left\{{}\begin{matrix}x=2t-11\\y=t-6\end{matrix}\right.\) (t nguyên tùy ý)
Để $x,y$ nguyên dương thì \(\left\{{}\begin{matrix}x=2t-11>0\\y=t-6>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}t>\frac{11}{2}\\t>6\end{matrix}\right.\)
\(\Leftrightarrow t>6\)
Vậy nghiệm nguyên dương \(\left\{{}\begin{matrix}x=2t-11\\y=t-6\end{matrix}\right.\)\(t\in Z;t>6\)