Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(x^3+2x^2+3x+2=y^3\)
Với \(\orbr{\begin{cases}x>1\\x< -1\end{cases}}\)thì
\(x^3< x^3+2x^2+3x+2=y^3< \left(x+1\right)^3\)
Nên không tồn tại số nguyên x, y thỏa mãn đề bài.
Từ đây ta suy ra \(-1\le x\le1\)
Với \(x=-1\Rightarrow y=0\)
\(x=0\Rightarrow y=\sqrt[3]{2}\left(l\right)\)
\(x=1\Rightarrow y=2\)
b/ \(y^2+2\left(x^2+1\right)=2y\left(x+1\right)\)
\(\Leftrightarrow2y^2+4\left(x^2+1\right)=4y\left(x+1\right)\)
\(\Leftrightarrow\left(y^2-4xy+4x^2\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(y-2x\right)^2+\left(y-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}y=2x\\y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
1/ Ta có
\(x^2+9x+20=x^2+4x+5x+20=x\left(x+4\right)+5\left(x+4\right)=\left(x+4\right)\left(x+5\right)\)
Tương tự
\(x^2+11x+30=\left(x+5\right)\left(x+6\right)\)
\(x^2+13x+42=\left(x+6\right)\left(x+7\right)\)
Đk: x khác 4, 5, 6, 7
\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{\left(x+5\right)-\left(x+4\right)}{\left(x+4\right)\left(x+5\right)}+\frac{\left(x+6\right)-\left(x+5\right)}{\left(x+5\right)\left(x+6\right)}+\frac{\left(x+7\right)-\left(x+6\right)}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\) EM tự làm tiếp nhé
a) \(x^3-5x^2+8x-4\)
\(=x^3-2x^2-3x^2+6x+2x-4\)
\(=x^2\left(x-2\right)-3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-3x+2\right)\)
\(=\left(x-2\right)\left(x^2-x-2x+2\right)\)
\(=\left(x-2\right)\left[x\left(x-1\right)-2\left(x-1\right)\right]\)
\(=\left(x-2\right)\left(x-1\right)\left(x-2\right)\)
b) \(A=10x^2-15x+8x-12+7\)
\(A=5x\left(2x-3\right)+4\left(2x-3\right)+7\)
\(A=\left(2x-3\right)\left(5x+4\right)+7\)
Dễ thấy \(\left(2x-3\right)\left(5x+4\right)⋮\left(2x-3\right)=B\)
Vậy để \(A⋮B\)thì \(7⋮\left(2x-3\right)\)
\(\Rightarrow2x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x\in\left\{2;1;5;-2\right\}\)
Vậy.......