Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#Giải:
Theo bài ra ta có :
2xy + 2x + 2y = 0
2 (xy + x + y ) = 0
=>xy + x + y = 0
x (y + 1) + y = 0
=> x (y + 1) = 0 và y = 0
Nếu y = 0 thì :
=>x (0 + 1) =0
=>x = 0
Vậy x = 0 và y = 0
[ P/S : Hoq chắc ]
#By_Ami
1. a)
Vì \(\left(x-2\right).\left(y+5\right)=7\Rightarrow\)x-2 và y+5 là các ước của 7
\(Ư\left(7\right)=\left\{1;7\right\}\)
Lập bảng giá trị:
x-2 | 1 | 7 |
y+5 | 7 | 1 |
x | 3 | 9 |
y | 2 | -4 |
Chọn/Loại | Chọn | Loại |
Vậy \(x=3;y=2\)
Lời giải:
$x,y$ tự nhiên
$(2x+1)(y^2-5)=12$.
$\Rightarrow 2x+1$ là ước của $12$
$x\in\mathbb{N}$ kéo theo $2x+1$ là số tự nhiên lẻ nên $2x+1$ là ước tự nhiên lẻ của $12$
$\Rightarrow 2x+1\in\left\{1; 3\right\}$
Nếu $2x+1=1$:
$y^2-5=\frac{12}{1}=12\Rightarrow y^2=17$ (không thỏa mãn do $y$ tự nhiên)
Nếu $2x+1=3$
$\Rightarrow x=1$
$y^2-5=\frac{12}{2x+1}=4\Rightarrow y^2=9=3^2=(-3)^2$
Do $y$ tự nhiên nên $y=3$
Vậy $(x,y)=(1,3)$
a) \(\left(3x-2\right)\left(2y-3\right)=1\)
TH1: \(\hept{\begin{cases}3x-2=1\\2y-3=1\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
TH2: \(\hept{\begin{cases}3x-2=-1\\2y-3=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\y=1\end{cases}}\)
\(a,\left(3x-2\right).\left(2y-3\right)=1\)
\(\Rightarrow3x-2=1\)
\(3x=1+2\)
\(3x=3\)
\(x=3:3\)
\(x=1\)
\(2y-3=1\)
\(2y=1+3\)
\(2y=4\)
\(y=4:2\)
\(y=2\)
mình làm bài 1 thôi nha.
a, 1 . 106 = 106
b, có lộn đề k
c, 51 . 101 = 5151
(2x+1).(y2-5)=12=1.12=12.1=6.2=2.6=3.4=4.3=...(cả số âm)
Rồi bạn lập bảng
VD:
2x+1 | 1 |
y2-5 | 12 |
x | 0 |
y | \sqrt{17}17loại |
`(2x+1)(y^2-5)=12=1.12=(-1).(-12)=2.6=(-2).(-6)=3.4=(-3).(-4)`
`2x+1` | `1` | `12` | `-1` | `-12` | `3` | `4` | `-3` | `-4` | `2` | `6` | `-2` | `-6` |
`y^2-5` | `12` | `1` | `-12` | `-1` | `4` | `3` | `-4` | `-3` | `6` | `2` | `-6` | `-2` |
`x` | `0` | `5,5` | `-1` | `-6,5` | `1` | `1,5` | `-2` | `-2,5` | `0,5` | `2,5` | `-1,5` | `-3,5` |
`y` | `\sqrt{17}` | L | L | L | `3` | L | `1` | L | L | L | L | L |
Vì `x;y` là số tự nhiên `=>x=1;y=3`
Ta có 2x+y-2x-2y=0
<=> 2x(2y-1)-(2y-1)=1
<=> (2x-1)(2y-1)=1
TH1
\(\hept{\begin{cases}2^x-1=1\\2^y-1=1\end{cases}}\)<=> \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)
TH2
\(\hept{\begin{cases}2^x-1=-1\\2^y-1=-1\end{cases}}\)<=>\(\hept{\begin{cases}x=0\\y=0\end{cases}}\)