\(\in\)Z, biết:

a.25 - y

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

a) \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) (1)

     \(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)

Từ (1);(2) suy ra: \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Theo đề: \(\left|x-2y\right|=5\)

\(\Rightarrow x-2y=5\) (nếu \(x-2y\ge0\Leftrightarrow x\ge2y\) )

    \(x-2y=-5\) (nếu \(x< 2y\) )

Vậy có hai trường hợp

TH1: Nếu \(x\ge2y\) suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)

\(\Rightarrow\hept{\begin{cases}x=15.\left(-1\right)=-15\\y=10.\left(-1\right)=-10\\z=6.\left(-1\right)=-6\end{cases}}\) (nhận)

TH2: Nếu x < 2y suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)

\(\Rightarrow\hept{\begin{cases}x=15.1=15\\y=10.1=10\\z=6.1=6\end{cases}}\) (nhận)

b) \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\) (1)

    \(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\) (2)

Từ (1);(2) => \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k\)

\(\Rightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}\Rightarrow xy=6k.15k=90k^2=90\Rightarrow k^2=1\Rightarrow k=\left\{-1;1\right\}}\)

\(\Rightarrow\hept{\begin{cases}x=6.1=6\\y=15.1=15\\z=10.1=10\end{cases}}\) hoặc \(\hept{\begin{cases}x=6.\left(-1\right)=-6\\y=15.\left(-1\right)=-15\\z=10.\left(-1\right)=-10\end{cases}}\)

11 tháng 2 2019

c) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)

\(\frac{2x+2y+2z}{x+y+z}\)

\(\frac{2\left(x+y+z\right)}{x+y+z}=2\)

=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2

=> \(\frac{y+z+1}{x}=2\) => y + z + 1 = 2x 

                                       => y + z + x + 1 = 3x

                                       => 1/2 + 1 = 3x

                                      => 3/2 = 3x

                                      => x = 3/2 : 3 = 1/2

=> \(\frac{x+z+2}{y}=2\) => x + z + 2 = 2y

                                        => x + z + y + 2 = 3y

                                        => 1/2 + 2 = 3y

                                       => 5/2 = 3y

                                       => y = 5/2 : 3 = 5/6

=> \(\frac{x+y-3}{z}=2\)=> x + y - 3 = 2z

                                         => x + y + z - 3 = 3z

                                          => 1/2 - 3 = 3z

                                        => 3z = -5/2

                                         => z = -5/2 : 3 = -5/6

Vậy ...

6 tháng 2 2019

Ta có 
25 - y^2 = 8(x-2009)^2 
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0 
Mặt khác do 
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn 
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe) 
Do vậy chỉ tồn tại các giá trị sau 
y^2 = 1, y^2 = 9, y^2 = 25 
y^2 = 1; (x-2009)^2 = 3 (loại) 
y^2 = 9; (x-2009)^2 = 2 (loại) 
y^2 = 25; (x-2009)^2 = 0; x = 2009 
Vậy pt có nghiệm nguyên (2009 , -5) ; (2009 , 5) 

7 tháng 2 2019

Trần Việt Anh cop gi ma ngu the :( cop xong ghi nguon vào ho to :))

\(25-y^2=8\left(x-2009\right)^2\)

\(\Leftrightarrow\frac{\left(x-2009\right)^2}{\left(\frac{5}{2\sqrt{2}}\right)^2}+\frac{\left(y-0\right)^2}{5^2}=0\)

\(\Rightarrow x,y\in\left(2009;5\right)\)

29 tháng 6 2018

Ta có:\(2x^3-1=15\Rightarrow x^3=8\Rightarrow x=2\)

\(\frac{y-25}{16}=2\Rightarrow y=2.16+25=57\)

\(\frac{z+9}{25}=2\Rightarrow z=25.2-9=41\)

29 tháng 6 2018

\(2x^3-1=15\)

\(2x^3=16\)

\(x^3=8\)

\(x=2\)

\(\Rightarrow\frac{x+16}{9}=\frac{2+16}{9}=\frac{18}{9}=2\)

\(\Rightarrow\frac{y-25}{16}=2\)

\(\Rightarrow y-25=32\)

\(\Rightarrow y=57\)

\(\Leftrightarrow\frac{z+9}{25}=2\)

\(\Rightarrow z+9=50\)

\(\Rightarrow z=50-9=41\)

Vậy \(z=41;x=2;y=57\)

A=\(\left(\frac{1}{4}-1\right).\left(\frac{1}{9}-1\right).\left(\frac{1}{16}-1\right).............\left(\frac{1}{9801}-1\right).\left(\frac{1}{10000}-1\right)\)

A=\(\left(\frac{1-4}{4}\right).\left(\frac{1-9}{9}\right).\left(\frac{1-16}{16}\right).............\left(\frac{1-9801}{9801}\right).\left(\frac{1-10000}{10000}\right)\)

A=\(\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}.....................\frac{-9800}{9801}.\frac{-9999}{10000}\)

A=\(\frac{-1.3}{2^2}.\frac{-2.4}{3^2}.\frac{-3.5}{4^2}.....................\frac{-98.100}{99^2}.\frac{-99.101}{100^2}\)

A=\(\frac{\left[\left(-1\right).\left(-2\right).\left(-3\right)....................\left(-98\right).\left(-99\right)\right].\left(3.4.5............100.101\right)}{\left(2.3.4.........99.100\right).\left(2.3.4...............99.100\right)}\)

A=\(\frac{1.101}{100.2}\)=\(\frac{101}{200}\)

2

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.................+\frac{2}{x.\left(x+1\right)}=\frac{2015}{2017}\)

\(\frac{1}{3.2}+\frac{1}{6.2}+\frac{1}{10.2}+.................+\frac{2}{2.x.\left(x+1\right)}=\frac{1}{2}.\frac{2015}{2017}\)

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.................+\frac{1}{x.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..................+\frac{1}{x.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+..............+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{x+1}{2.\left(x+1\right)}-\frac{2}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{\left(x+1\right)-2}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

\(\frac{x-1}{2.\left(x+1\right)}=\frac{2015}{2017}.\frac{1}{2}\)

=>\(\frac{x-1}{x+1}=\frac{2015}{2017}.\frac{1}{2}:\frac{1}{2}\)

\(\frac{x-1}{x+1}=\frac{2015}{2017}\)

=>x+1=2017

=>x=2018-1

=>x=2016

Vậy x=2016

Còn bài 3 em ko biết làm em ms lớp 6

Chúc anh học tốt

21 tháng 11 2018

\(\Leftrightarrow\frac{x^{2014}}{a^2+b^2+c^2+d^2}+\frac{y^{2014}}{a^2+b^2+c^2+d^2}+\frac{z^{2014}}{a^2+b^2+c^2+d^2}+\frac{t^{2014}}{a^2+b^2+c^2+d^2}\)

\(-\frac{x^{2014}}{a^2}-\frac{y^{2014}}{b^2}-\frac{z^{2014}}{c^2}-\frac{t^{2014}}{d^2}=0\)

\(\Leftrightarrow\left(\frac{x^{2014}}{a^2+b^2+c^2+d^2}-\frac{x^{2014}}{a^2}\right)+\left(\frac{y^{2014}}{a^2+b^2+c^2+d^2}-\frac{y^{2014}}{b^2}\right)+\left(\frac{z^{2014}}{a^2+b^2+c^2+d^2}-\frac{z^{2014}}{c^2}\right)\)

\(+\left(\frac{t^{2014}}{a^2+b^2+c^2+d^2}-\frac{t^{2014}}{d^2}\right)=0\)

\(\Leftrightarrow x^{2014}.\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\right)+y^{2014}.\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{b^2}\right)+\)

\(z^{2014}.\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{c^2}\right)+t^{2014}.\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{d^2}\right)=0\)

vì a2,b2,c2,d2 lớn hơn hoặc bằng 0

=>  \(\hept{\begin{cases}\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{b^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{c^2}\ne0\end{cases}}và....\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{d^2}\ne0\)

\(\Rightarrow\hept{\begin{cases}x^{2014}=0\\y^{2014}=0\\z^{2014}=0\end{cases}}và..t^{2014}=0\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}và...t=0\)

=> \(\hept{\begin{cases}x^{2015}=0\\y^{2015}=0\\z^{2015}=0\end{cases}}và..t^{2015}=0\Rightarrow x^{2015}+y^{2015}+z^{2015}+t^{2015}=0\)

vậy \(x^{2015}+y^{2015}+z^{2015}+t^{2015}=0\)

10 tháng 10 2019

\(\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\) ; \(\frac{y}{z}=\frac{4}{3}\Rightarrow\frac{y}{4}=\frac{z}{3}\)

ta có :

\(\frac{x}{3}=\frac{y}{5}\)

\(\frac{y}{4}=\frac{z}{3}\)

\(\Rightarrow\frac{x}{12}=\frac{y}{20}=\frac{z}{15}\)

áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{x}{12}=\frac{y}{20}=\frac{z}{15}=\frac{4x}{48}=\frac{2z}{30}=\frac{4x-y+2z}{48-20+30}=\frac{116}{58}=2\)

\(\frac{x}{12}=3\Rightarrow x=36\)

\(\frac{y}{20}=2\Rightarrow y=40\)

\(\frac{z}{15}=2\Rightarrow z=30\)

22 tháng 10 2018

a) Ta có:

\(\frac{x}{4}=\frac{y}{5}\)và \(x+y=18\)

AĐTCCDTSBN(Áp dụng tính chất của dãy tỉ số bằng nhau)

\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{18}{9}=2\)

\(\frac{x}{4}=2\Rightarrow x=2.4=8\)

\(\frac{y}{5}=2\Rightarrow y=2.5=10\)

Bài kia tương tự

22 tháng 10 2018

a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{18}{9}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=2\\\frac{y}{5}=2\end{cases}\Rightarrow\hept{\begin{cases}x=8\\y=10\end{cases}}}\)

Vậy x = 8; y = 10

b) Ta có : 

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{12}=\frac{x+y+z}{8+12+18}=\frac{20}{38}=\frac{10}{19}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{10}{19}\\\frac{y}{12}=\frac{10}{19}\\\frac{z}{18}=\frac{10}{19}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{80}{19}\\y=\frac{120}{19}\\z=\frac{180}{19}\end{cases}}}\)

Vậy \(x=\frac{80}{19};y=\frac{120}{19};z=\frac{180}{19}\)