Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x+y}{2014}\ne\frac{x-y}{2016}\)
\(\Leftrightarrow2016x+2016y=2014x-2014y\)
\(\Leftrightarrow2x=-4030y\)
\(\Leftrightarrow x=-2015y\)
Thay \(x=-2015y\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được:
\(\Leftrightarrow\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)
\(\Leftrightarrow\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)
\(\Leftrightarrow-y=-y^2\)
\(\Leftrightarrow y-y^2=0\)
\(\Leftrightarrow y\left(1-y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=0\\1-y=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
Trường hợp \(y=0\):
\(y=0\Rightarrow x.y=-2015.0=0\)
Trường hợp \(y=1\):
\(y=1\Rightarrow x.y=-2015.1=-2015\)
\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)
\(=>\frac{y-x}{xy}=\frac{1}{xy}\)
\(=>xy^2-x^2y=xy\)
\(=>xy^2-x^2y-xy=0\)
\(=>x.\left(y^2-xy-y\right)=0\)
\(=>\orbr{\begin{cases}x=0\\y^2-xy-y=0\end{cases}}\)
Ta thấy \(y^2-xy-y=0\)
\(=>y.\left(y-x-y\right)=0\)
\(=>\orbr{\begin{cases}y=0\left(2\right)\\y-y=0\end{cases}}\)
Từ 1 và 2 => x = y = 0
\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)
\(\Rightarrow\frac{y-x}{xy}=\frac{1}{xy}\)
\(\Rightarrow y-x=1\)
Vậy x,y có dạng \(\hept{\begin{cases}x=y-1\\y=x+1\end{cases}}\)với \(y\ne1;x\ne-1;x\ne0;y\ne0\)
\(a,\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và 2x + 3y - z = 124
Ta có : \(\frac{x}{3}=\frac{y}{4}\)=> \(\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\)=> \(\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)
Đến đây là tìm x,y,z rồi
b. Ta có : \(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=x+y+z(1)\)
Áp dụng tính chất bằng nhau của tỉ lệ thức ta được :
\(\frac{x+y+z}{2\left[x+y+z\right]}=x+y+z(2)\)
Nếu x + y + z = 0 thì từ \((1)\)suy ra x = 0 , y = 0 , z = 0
Nếu x + y + z \(\ne\)0 thì từ \((2)\)ta suy ra : \(\frac{1}{2}=x+y+z\), khi đó \((1)\)trở thành :
\(\frac{x}{\frac{1}{2}-x+1}=\frac{y}{\frac{1}{2}-y+1}=\frac{z}{\frac{1}{2}-z-2}=\frac{1}{2}\)
Do đó : 2x = \(\frac{3}{2}-x\)=> \(x=\frac{1}{2}\); 2y = \(\frac{3}{2}-y\)=> \(y=\frac{1}{2}\); 2z = \(-\frac{3}{2}-z\)=> \(z=-\frac{1}{2}\)
Vậy có hai đáp số \((0,0,0)\)và \((\frac{1}{2};\frac{1}{2};-\frac{1}{2})\)
\(\Leftrightarrow\frac{4}{9}x^2=\frac{9}{16}y^2=\frac{25}{36}z^2\)
\(\Leftrightarrow\frac{900}{2025}x^2=\frac{900}{1600}y^2=\frac{900}{1296}z^2\)
Áp dụng t/c dãy tỉ số bằng nhau ta được:\(\Leftrightarrow\frac{900}{2025}x^2=\frac{900}{1600}y^2=\frac{900}{1296}z^2=\frac{900.\left(x^2+y^2+z^2\right)}{2025+1600+1296}=\frac{900.724}{4921}\)
=> x ~ 17,26; y ~ 15,34; z ~ 13,81.