Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2+y^2-z^2-2zt+2xy-t^2}{x^2-y^2+z^2-2ty+2xz-t^2}=\frac{\left(x^2+2xy+y^2\right)-\left(z^2+2zt+t^2\right)}{\left(x^2+2xz+z^2\right)-\left(y^2+2ty+t^2\right)}=\)
\(\frac{\left(x+y\right)^2-\left(z+t\right)^2}{\left(x+z\right)^2-\left(y+t\right)^2}=\frac{\left(x+y-z-t\right)\left(x+y+z+t\right)}{\left(x+z-y-t\right)\left(x+z+y+t\right)}=\frac{x+y-z-t}{x+z-y-t}\)
ủa? là mình làm sai hay bạn ghi đề sai vậy?
Để bpt trên >0
=> x+5>0 và 3x-12>0
<=>x>-5 và x>4
=>x>4
Hoặc
x+5<0 và 3x-12<0
<=>x<-5 và x<4
=>x<-5
Vậy để bpt trên >0 thì x>4 hoặc x<-5
a) (x-y)2-(x2-2xy)
=y2-2xy+x2-x2+2xy
=y2-(-2xy+2xy)+(x2-x2)
=y2
b)(x-y)2+x2+2xy-(x+y)2
=y2-2xy+x2+x2+2xy-y2-2xy-x2
=(y2-y2)-(2xy+2xy-2xy)+(x2+x2-x2)
=x2-2xy
Ta có:
2*y=x+y
=>y+y=x+y.
Trừ cả 2 vế cho y ta được:
x=y.
Vậy với x=y thì 2y=x+y.
\(\Rightarrow x\left(2y-1\right)=y\Leftrightarrow x=\frac{y}{2y-1}\)
để x nguyên thì \(y⋮\left(2y-1\right)\)thì \(2y-1\)là ước của \(y\)nên có các th